Skip to Main Content GCEP Home Page
blank space
HOME | RESEARCH | OUTREACH | EVENTS | NEWS | TECHNICAL LIBRARY | ABOUT US
spacer
Site Search Stanford University blank space
blank space
blank space
Link to Research Research Areas & Activities Solar Energy Biomass Energy Hydrogen Advanced Combustion CO2 Capture CO2 Storage Advanced Materials & Catalysts Electrohydrogenation: Enabling Science for Renewable Fuels Using Simulations to Discover New Materials with Energy Conversion Applications Nature-Inspired Solid-State Electrocatalysts: The Oxidation of Water and the Reduction of CO2 to Fuels Nanoscale Architectural Engineering for High Performance Solid Oxide Fuel Cells The Electron Economy: Oxidation Catalysis for Energy Management Metal Oxide Nanotubes and Photo-Excitation Effects: New Approaches for Low-to-Intermediate Temperature Solid Oxide Fuel Cells Electrocatalysis with Discrete Transition Metal Complexes Advanced Coal Advanced Transportation Advanced Electric Grid Grid Storage Other Renewables Integrated Assessment Advanced Nuclear Energy Geoengineering Exploratory Efforts All Activities Analysis Activities Technical Reports
Results and Publications printer friendly format
Electrocatalysis with Discrete Transition Metal Complexes

Start Date: January 2005
Status: Completed


Investigators

Christopher E. D. Chidsey, T. Daniel P. Stack, Robert M. Waymouth, Department of Chemistry, Stanford University

Annual Reports Presentations
Updated February 2011
 
blank space
blank space
blank space
blank space
blank space
RESEARCH  |  EVENTS  |  NEWS  |  TECHNICAL LIBRARY  |  ABOUT  |  TERMS OF USE  |  SITE MAP  |  HOME


© Copyright 2011-2013 Stanford University: Global Climate and Energy Project (GCEP)


Restricted Use of Materials from GCEP Site: User may download materials from GCEP site only for User's own personal, non-commercial use. User may not otherwise copy, reproduce, retransmit, distribute, publish, commercially exploit or otherwise transfer any material without obtaining prior GCEP or author approval.