Lignin Management: Optimizing Yield in Lignin-Modified Plants

Investigators

Clint Chapple (CC), Professor, Department of Biochemistry, Purdue University, West Lafayette, IN USA 47907

Whitney Dolan, graduate student, Department of Biochemistry, Purdue

Wout Boerjan (WB), Professor, VIB Department of Plant Systems Biology, UGent Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Gent, Belgium

Kris Morreel, Staff Scientist, VIB, Gent, Belgium

Geert Goeminne, Engineer, VIB, Gent, Belgium

Ruben Vanholme, Post-doctoral Researcher, VIB, Gent, Belgium

Bartel Vanholme, Professor, VIB, Gent, Belgium

Claire Halpin (CH), Professor, Plant Biology and Biotechnology, Division of Plant Sciences, University of Dundee at JHI, Errol Road, Invergowrie, Dundee, Scotland

Chris McClellan, Post-doctoral Researcher, University of Dundee, Scotland

Abdellah Barakate, Post-doctoral Researcher, University of Dundee, Scotland

John Ralph (JR), Professor, Department of Biochemistry and the D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, Madison, WI USA 53726

Yuki Tobimatsu, Research Scientist, Biochemistry, U Wisconsin, Madison (now an Assistant Professor at Kyoto U.)

Yukiko Tsuji, Research Scientist, Biochemistry, U Wisconsin, Madison

Xu ‘Sirius’ Li (SL), Professor, Department of Plant Biology and Plants for Human Health Institute, North Carolina State University, N.C. Research Campus, Kannapolis, NC USA

Renee Strauch, Research Specialist, NCSU

Han-Yi Chen, Post-doctoral Researcher, NCSU

Abstract

This project aims to maximize the utility of plant lignocellulosic biomass as an abundant, sustainable, and carbon-neutral energy feedstock by optimizing both its yield and composition to facilitate downstream conversions to fuel and electricity. Working independently with different lignin-deficient mutants, the partners have discovered novel genes that mitigate the growth defects [so-called lignin-modification-induced dwarfism (LMID)] seen in severely lignin-depleted plants. Revealing the mechanism(s) by which this mitigation occurs is critical to fundamental understanding and useful manipulation of how plants partition carbon and may enable biomass manipulation for carbon sequestration in the future. We have undertaken several projects to determine the causes of, and to reduce the effects of, LMID. By expressing the lignin biosynthetic gene *CSE* only in vessel elements, the effects of LMID in *cse* mutants is lessened. We are also utilizing mutant screens in lignin biosynthetic mutants to discover novel genes involved in LMID. One screen, in the *ccr1* background, has led to the discovery of a mutant that partially restores the growth defect of the original line, yet maintains saccharification efficiency. The gene responsible for this trait has been identified, and tests are underway to understand the mechanism behind the LMID reduction. Another mutant screen, in the highly dwarfed *ref8 (c.3h)* background, has identified more than 20 lines that suppress LMID,
designated as *growth inhibition relieved (gir)*. One of these, *GIR1*, has been identified through a mapping by next generation sequencing approach as a β-importin important for translocation of a transcription factor responsible for regulation of lignin biosynthesis genes. Another screen for suppressors of a mutant in the transcriptional complex Mediator, which controls the LMID response in *ref8* plants, has yielded a variety of mutants which could lead to a greater understanding of how LMID is induced in *c3h* plants.

Towards identifying the pathways responsible for LMID, a metabolomic pipeline has been established to identify metabolites altered in lignin mutants. The detection and authentication of compounds identified by this pipeline will be enhanced because we have synthesized several lignin trimers and tetramers, allowing us to generate metabolite profiles for them. We have also pioneered the production of monolignols that can be selectively tagged after incorporation into lignin, allowing us to probe lignin structure to a greater degree. Several phenylpropanoid metabolites were screened for their ability to affect *Arabidopsis* growth, and one was found to alter growth. The incorporation of alternative monolignols has also been investigated, as the inclusion of hydroxycinnamaldehydes leads to an increase in saccharification potential. We are also targeting the orthologs of high saccharification mutants previously identified in *Arabidopsis* for implementation in energy crops (barley, poplar). The new CRISPR/Cas9 technology will allow for targeted knock-outs of lignin biosynthesis genes in barley. This will allow for greater effects on plant lignin content and composition.

Publications

Contacts
 Clint Chapple: chapple@purdue.edu
 Wout Boerjan: woboe@psb.vib-ugent.be
 Claire Halpin: c.halpin@dundee.ac.uk
 John Ralph: jralph@wisc.edu
 Xu Li: sirius_li@ncsu.edu
 Yuki Tobimatsu: yukitobi@kais.kyoto-u.ac.jp
 Yukiko Tsuji: ytsuji@wisc.edu
 Renee Strauch: rcstrau@ncsu.edu
 Han-Yi Chen: hchen29@ncsu.edu
 Kris Morreel: krmor@psb.vib-ugent.be
 Geert Goeminne: gegoe@psb.vib-ugent.be
 Ruben Vanholme: ruhol@psb.vib-ugent.be
 Bartel Vanholme: bahol@psb.vib-ugent.be
 Chris McClellan: christopher.mcclellan@hutton.ac.uk
 Abdellah Barakate: abdellah.barakate@hutton.ac.uk
 Whitney Dolan: wsoltau@purdue.edu