Overview of Carbon Capture Methods

Jennifer Wilcox
Department of Energy Resources Engineering
Understanding the Scale of CO$_2$ Capture

Let’s make useable products out of CO$_2$! Not a good idea... the only market that scales appropriately is the fuel market (the original source of CO$_2$!)

• Annual Worldwide Chemical Production – *millions* of tons
 – Sulfuric acid → 200
 – Ammonia → 122
 – Ethylene → 109

• Annual Worldwide CO$_2$ Emissions – *billions* of tons
 – Coal → 12.49 (primarily point-source)
 – Liquids → 11.27 (primarily distributed)
 – Natural Gas → 5.93 (both distributed and point-source)
Minimum Thermodynamic Work

\[W_{\text{min}} = RT \left[n_B^{CO_2} \ln(y_B^{CO_2}) + n_B^{B''CO_2} \ln(y_B^{B''CO_2}) \right] + RT \left[n_C^{CO_2} \ln(y_C^{CO_2}) + n_C^{C''CO_2} \ln(y_C^{C''CO_2}) \right] \\
^{''} RT \left[n_A^{CO_2} \ln(y_A^{CO_2}) + n_A^{A''CO_2} \ln(y_A^{A''CO_2}) \right] \]
Minimum Work for Various Applications

- CO₂ in air (380 ppm – 580 ppm)
- CO₂ in NGCC (5-8%)
- CO₂ in PCC (10-15%)
- CO₂ in IGCC (≈40-60%)
Sherwood Plot for Flue Gas Scrubbing

Next: How to Reduce the Cost of CC, Edward Rubin, Carnegie Mellon

*Calculations carried out using IECM, all cases assume 500-MW plant burning Appalachian bituminous, NGCC (477-MW) O&M + annualized capital costs are included in the cost estimates
Cost and Scale

<table>
<thead>
<tr>
<th>Process</th>
<th>Price [$/kg]</th>
<th>Concentration [mole fraction]</th>
<th>Emissions [kg/day]</th>
<th>Cost [1000s $/day]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO(_2)-PCC</td>
<td>0.045</td>
<td>0.121</td>
<td>8.59 x 10(^6)</td>
<td>392</td>
</tr>
<tr>
<td>CO(_2)-NGCC</td>
<td>0.059</td>
<td>0.0373</td>
<td>3.01 x 10(^6)</td>
<td>178</td>
</tr>
<tr>
<td>SO(_x) (MS)</td>
<td>0.66</td>
<td>0.00127</td>
<td>8.94 x 10(^4)</td>
<td>59.6</td>
</tr>
<tr>
<td>SO(_x) (LS)</td>
<td>2.1</td>
<td>0.000399 (399 ppm)</td>
<td>2.32 x 10(^4)</td>
<td>50.4</td>
</tr>
<tr>
<td>NO(_x)</td>
<td>1.1</td>
<td>0.000387 (387 ppm)</td>
<td>1.11 x 10(^4)</td>
<td>12.5</td>
</tr>
<tr>
<td>Hg</td>
<td>22000</td>
<td>5 x 10(^{-9}) (ppb)</td>
<td>0.951</td>
<td>21.6</td>
</tr>
</tbody>
</table>

“the recovery of potentially valuable solutes from dilute solution is dominated by the costs of processing large masses of unwanted materials.”

- Edwin Lightfoot

\(^1\)These can change based upon coal-type burned and scrubbing methods; \(^2\)EN Lightfoot, MCM Cockrem, What Are Dilute Solutions, Sep. Sci. Technol., 22(2), 165, 1987.
2nd-Law Efficiency Drops with Concentration

Manuscript in preparation in collaboration w/ Kurt House, et al.
How to Increase the 2^{nd}-Law Efficiency?

Taking a closer look at absorption via MEA as an example:

1. Regeneration
2. Compression
3. Blower/Fan
4. Pumping

Can we establish targets based upon scientific limits? Should we reconsider the way in which we convert coal to energy?
Rethinking Coal to Energy

with the vision of CC

- Coal - 40% of the world’s electricity
- Carbon Capture was not an aspect of the original vision of heat extraction from coal oxidation to produce steam
- Advanced conversion methods may lead to increased CC efficiencies:
 - Chemical Looping – using metal oxides as the oxidation source to minimize “unwanted materials”
 - Integrated Gasification Combined Cycle – syngas ($\text{CO}_2 + \text{H}_2$ after WGS) production leading to an increased driving force for mass transfer and flexibility
 - Oxy-fuel Combustion – burning in oxygen (ASU)
 - Novel Approach: Integrating coal-to-energy conversion w/ storage

1 LS Fan, Chemical Looping Systems for Fossil Energy Conversions, 2010 (OSU); 2 Chris Edwards (SU)
Traditional Separation Methods

- Absorption (most advanced → MEA)
- Adsorption
- Membrane Technology
- Hybrid Approaches
 - Contained-liquid membranes
 - Hollow-fiber sorbents

Expanding the CC Portfolio

- CO$_2$ Reduction Electrocatalysis
- Role of Algae in CC
CC in General: Mass Transfer is Key

Which is the limiting mass transfer step? Begin the research there.

Carbonate versus Carbamate

1. Dissolution of \(\text{CO}_2 \) (physical)
2. Bicarbonate formation
 - \(\text{CO}_2: \text{amine} = 1 \)
 - Low heat of absorption
3. Carbamate formation
 - \(\text{CO}_2: \text{amine} = 0.5 \) (lower capacity)
 - High heat of absorption

Tertiary amine acts as a base catalyst, forming a H bond with water, weakening the OH bond and allowing for hydration of \(\text{CO}_2 \) to bicarbonate

More details to come: Nicola McCann, Kinetics of \(\text{CO}_2 \) Absorption, TU Kaiserslautern, Germany
Carbonic Anhydrase

- CA is a Zn-containing metalloenzyme
- Facilitates hydration and dehydration of CO₂
- Rate of reaction is up to 8 orders of magnitude faster than CO₂ binding in neutral water w/out catalyst
- Scalable?
- Can the dehydration act as a regeneration method to substitute the traditional heat requirement?

More details to come: Roger Aines, CC Using Small-Molecule Catalysts that Mimic CA, LLNL
Absorption (physical)

- Simple models → Rate of absorption
- Film Theory (Whitman, 1923 and Nernst, 1904 on “diffusion layer”)
 - No convection in the film
 - Dissolved CO\textsubscript{2} moves by only molecular diffusion
 - Rate of absorption = \(\frac{D_A}{\text{\text{\(A^* - A^0\)}}} \)
- Penetration Theory (Higbie, 1935)
 - Fluid is comprised of elements that get exposed to the gas interface for some amount of time
 - Assumes that every element of fluid is exposed to the interface for same length of time (\(\theta\))
 - Rate of absorption = \(2 \left(A^* - A^0 \right) \sqrt{D_A} \)
- Surface-Renewal Theory (Dankwerts, 1951)
 - Average over a distribution of exposure times
 - Where \(s\) is the fraction of SA replaced w/ fresh liquid per unit time, rate of absorption =
 \[
 \left(A^* - A^0 \right) \sqrt{\frac{D_A}{\int_0^\infty e^{-s}\, dq}}
 \]
Absorption (chemical)

- Irreversible 2nd-order Reaction: $CO_2 + 2B \xrightarrow{k_2} CO_2B$
 - Assume that bulk CO_2 concentration = 0 (i.e., $A^0 = 0$)
- Rate of Absorption = $k_L A^* E$
- $EF \rightarrow$ factor by which absorption rate is increased by rxn
- Enhancement factor is a function of:

 \[
 \sqrt{M} = \sqrt{\frac{D_A k_2 B^0}{k_L}} \quad \text{and} \quad E_i = 1 + \frac{D_B B^0}{2D_A A^*}
 \]

- E_i corresponds to instantaneous rxn
- Simplifying Criteria:
 1. Instantaneous rxn (fast rxn or $B^0 << A^*$): $\sqrt{M} > 10E_i$
 2. Pseudo-first order (slow rxn or B^0 undepleted): $\sqrt{M} < \frac{1}{2}E_i$
 3. Fast pseudo-first order rxn: If #2 is satisfied and $\sqrt{M} > 3$
 4. Checking these criteria can provide reasonable estimates on rates of absorption

More details to come: Ed Cussler, Mass Transfer is Key, UMN

Danckwerts, Gas-Liquid Reactions, 1970
Tunable Parameters in Absorption

• Rate of absorption
 ▪ Solubility of CO₂ in solution (Henry’s Law)
 ▪ Diffusion of CO₂ in solution
 ▪ Diffusion of B (reactant with CO₂) in solution
 ▪ Concentration of B in solution
 ▪ Rate constant of CO₂ with B in solution
 ▪ Liquid-phase mass-transfer coefficient of CO₂ in solution (physical)
 ▪ → influences mass transfer → extent of separation → tower design

• Heat of absorption
 ▪ Heat transfer properties of solvent

• Fluid properties
 ▪ Viscosity
 ▪ Vapor pressure
 ▪ Environmentally safe
 ▪ Low cost

• Can we assign targets based upon scientific limits?
Tunable Parameters in Adsorption

• Rate of adsorption
 ▪ Sorbent film resistance depending upon water vapor content
 ▪ Micro and mesopore diffusion
 ▪ Tortuosity
 ▪ Pore size distribution
 ▪ Surface area
 ▪ Steep breakthrough

• Heat of adsorption
 ▪ Heat transfer properties of sorbent

• Sorbent Lifetime and durability
 ▪ Regeneration cycles

• Can we assign targets based upon scientific limits?

More to come: ¹Doug Ruthven, CC by Adsorption: General Principles and Economics, UME

Carbon-Based Sorbents for CC

- Carbon nanotubes → high surface area substrates for amine functional groups
- Controllable pore size distribution
- Potential controllable tortuosity
- Mesopore → easier regeneration?
- Use quantum chemistry to generate charge profiles
- GCMC physical adsorption predictions
- Breakthrough experiments with bench-scale packed-bed experiments

Yangyang Liu and Abby Kirchofer
Cylindrical versus Slit pore

1. Stronger surface-surface interactions of CNT
2. Easier to form a second layer adsorption within a cylindrical pore

*Simulations carried out using GCMC in MUSIC (code developed by Snurr Group)
Tunable Membrane Parameters

• Do membranes have a place in PCC? What approaches exist to handle dilute systems?
• Flux
 ▪ Solubility of CO$_2$ in membrane (or some other component of gas mixture that may have a higher driving force)
 ▪ Diffusivity of CO$_2$ in membrane
 ▪ Permeability of CO$_2$ in membrane
• Selectivity toward CO$_2$
• Product purity and yield?
• Separator arrangement and varying compression stages?
• Can we assign targets based upon scientific limits?

More to Come: Richard Baker, Developing Membranes for CC (MTR)
H₂-Selective Membranes

- Quantum chemistry simulations
- For syngas application
- Pd-based alloys and Group V metals appear promising

N₂/O₂-Selective Membranes

- N₂ and O₂ are also able to catalytically dissociate across metal surfaces and diffuse atomically through interstitial crystal sites
- Use the solubility and diffusion parameters from the H₂-selective membrane field as targets
- Dope group V metals (reactive) to tune transport properties
- UHV (SLAC) and bench-scale experiments ongoing
As the Nitrogen is further from the Ru dopant, the binding strength increases
Recall H binding: O-site = -0.076eV; T-site = -0.280eV

Pauling-Scale Electronegativities: N = 3.04; V = 1.63; Ru = 2.2
Using kinetic Monte Carlo and various hopping mechanisms, diffusivity can be predicted.
Breakout-Session Questions
Breakout Session Groups

Group 1: Performance Targets
Tim Fout*, Mark Hartney, Karl Gerdes, Robert Perry

Group 2: Absorption and Catalysis
Roger Aines*, Ed Cussler, Nicola McCann, Rich Noble, Andy Peterson

Group 3: Adsorption and Adsorption Processes
Mike Arne*, Doug Ruthven, LS Fan, Holly Krutka

Group 4: Membrane and Adsorption
Richard Baker*, Shingo Kazama, Chris Jones, Randy Snurr

Group 5: Systems and Optimization
Tony Pavone*, Abhoyjit Bhown, Hamadri Pakrasi, Ed Rubin

Person to report back breakout results in Panel Discussion
Breakout Session Questions

Performance Targets

- Which criteria should GCEP include in a proposal solicitation as performance targets?

- For example, what performance targets would be game-changing over the next 10-50 years in terms of:
 - Energy Penalty
 - Water Use
 - Capital and Operating Cost
 - Lifetime
 - Materials
 - Scale/ Size/ Capacity
 - Reliability

- How do the targets change with scale?

- How should we account for variation in the rate of generation and capture in setting performance targets?

- What other metrics should we think about in addition to numbers for performance targets?
Breakout Session Question

Quantifying the Scientific Limits

Based on the criteria to be used in specifying performance targets (energy penalty, water, lifetime, etc.) for carbon capture systems:

- What are the most important technical parameters in your approach?
- Which performance targets can potentially be most impacted?

Technical Parameters

<table>
<thead>
<tr>
<th>Absorption</th>
<th>Adsorption</th>
<th>Membranes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal mass transfer coefficients (gas to liquids)</td>
<td>Optimal mass transfer coefficients (gas to adsorbed)</td>
<td>Optimal driving force</td>
</tr>
<tr>
<td>Absorption kinetics</td>
<td>Adsorption kinetics</td>
<td>Advanced configurations</td>
</tr>
<tr>
<td>Solvent pressure drop</td>
<td>Bed pressure drop</td>
<td>Selectivity</td>
</tr>
<tr>
<td>Solvent capacity</td>
<td>Sorbent capacity</td>
<td>Architecture</td>
</tr>
<tr>
<td>Heat of absorption</td>
<td>Heat of adsorption</td>
<td>Stability</td>
</tr>
<tr>
<td>Gas to liquid ratio</td>
<td>Diffusion resistance (pore size)</td>
<td>Optimal flux</td>
</tr>
<tr>
<td>Solvent losses and properties</td>
<td>Advanced adsorption process</td>
<td>Surface area</td>
</tr>
</tbody>
</table>
Breakout Session Questions

Systems and Optimization

- How can capture technologies best be integrated into energy conversion processes to achieve the desired performance targets?
- Are there other technologies or strategies for carbon capture systems that have not been discussed thus far? If so, what are they?
- What technologies could be developed that would result in high-pressure CO$_2$ as an end-product?
- What are the options for regeneration w/out the use of heat, i.e., dehydration via CA, inert gas purge or vacuum in desorption processes?
- What opportunities might there be for system optimization to benefit from these alternative approaches?
Extra Slide
Molecular N$_2$ adsorption energy

\[E_{\text{ads}} (\text{eV/molecule}) = \frac{E(\text{surf}+\text{N}_2) - [E(\text{surf}) + E(\text{N}_2)]}{n(\text{N}_2)} \]

Metal-Organic Frameworks

- Nanoporous crystalline materials
- Composed of organic-bridging ligands coordinated to metal-based nodes to form a 3D extended network of uniform pores ranging from 3 to 20 Å
- Surface areas up to 5000 m²/g and high void volumes (55-90%)¹

A metal-organic framework consisting of cobalt atoms (purple) linked by an organic bridging ligand (1,4-benzenedipyrazolate, with nitrogen and carbon atoms shown in blue and grey, respectively) and CO₂ molecules (red-grey-red spheres).²

More to come: Randy Snurr, Design and Assessment of MOFs for CC, Northwestern

¹Tranchemontagne, D.J. and et al., Chem. Int. Ed., 47, 2-14, 2008; ²Deanna M. D'Alessandro/UC Berkeley
Consider Hybrid Approaches - *Isowork Plot* \([kJ/\text{mol } CO_2]\)