Nanoscale Electrochemical Electrodes for Monitoring and Accessing Bioelectricity

Biology Applications Group
Department of Mechanical Engineering and Materials Science, Stanford University, CA, 94305
Department of Plant Biology, Carnegie Institution of Washington, Stanford University

Photosynthesis in chloroplasts of plant cells

- Light reactions occurring in the thylakoid membranes of chloroplasts
 - Create reducing power for the production of NADPH
 - Generate a transmembrane proton gradient for the formation of ATP
 - Produce oxygen and high energy electrons

Single Cell Diagnostic Platform

- Atomic Force microscopy combined with EC measurement setup
- Cell immobilization using Micro-sieve and hydrogel
- Confocal fluorescence microscopy

Experimental Results

Immobilization Method

- Single organelle immobilization for electrochemical measurements

Different Visualization Methods of a Single Chloroplast

- A: AFM deflection image
- B: Fluorescence image
- C: 100X Optical image

Concept of Bio Solar Cell using Chloroplasts

- Research objective: Harvesting the high energy electrons using dual nanoscale electrodes
- Source of the high energy electrons: $2\text{H}_2\text{O} \rightarrow 4\text{H}^+ + \text{O}_2 + 4\text{e}^-$
- Two target electrochemical reactions:
 1. Oxidation of reduced ferredoxins in stroma
 2. Recombination of protons, oxygens, and electrons in thylakoid space

AFM and Planar Probes for Measuring Bioelectricity

- Size comparison between mosquito proboscis and AFM tip
- Ultra sharp tips
- Nanometer size electrodes
- Dual-electrode system
- Suitable for penetrating a cell
- Customizable fabrication (FIB)

Electrochemical Measurements from Chloroplast

- Amperometric measurements
 - Detect REDOX / Oxygen reactions in vivo
 - Pt, Au, SAM modified electrodes
- Potential measurements
 - Measure potential across biological membranes
 - Ag/AgCl electrodes
- Capacitive measurements
 - Measure transient / displacement currents near thylakoid stacks
 - Pt, Au electrodes

Light-induced displacement currents are triggered by photosynthesis.