Localized Imaging and Light-driven Enhancement of Water-splitting Catalysts

Andrew J. Leenheer* and Harry A. Atwater
Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology

Motivation

- Photovoltaic solar energy conversion alone only provides power while sun shines
- Instead, store solar energy in H₂ chemical bonds by splitting water on immersed semiconductor photoelectrodes
- Electrode/electrolyte interface details and surface features govern performance
- Traditional measurement techniques average reaction rate over all surface features

Goal: Image and enhance reactivity of various surface features on a water-splitting electrode surface.

Experimental method: Image bubbles formed during water photoelectrolysis to measure the local gas evolution rate. Alternatively, avoid bubbles and instead image pH across the electrode surface using fluorescence.

Possible interesting nanostructure:

Plasmonic enhancement of water-splitting catalysts

Collective oscillation of electron gas in metallic nanostructure (localized plasmon) gives rise to high local electric fields that could increase electrocatalytic activity.

Plausible enhancement mechanisms:
- Direct electron transfer of hot electrons excited by plasmon decay
- Localized heating to increase reaction rate
- Desorption or polarization of reaction intermediates

Experimental approach: Create plasmonic "antennas" to create high fields in gaps where catalyst resides.

Photoanode Bubble Analysis

Strontium titanate (SrTiO₃) used as a model semiconductor photoanode material due to favorable band edge positions, stability, and commercial availability of single-crystal (100) substrates.

- Dope crystal n-type by annealing in forming gas at 1000 °C
- Bubble evolution recorded on a video camera attached to microscope

Results on (100) Single-Crystal SrTiO₃

Photovoltaic solar energy conversion alone only provides power while sun shines. **Decouple plasmon resonance from catalyst choice.**

Catalysts placed in gaps between Au squares may show increased activity when array illuminated at its resonance wavelength.

Simulation: Using finite-difference time domain (FDTD) method.

Field enhancement in gaps:
- Average ~10
- Peak ~200

Spectra: Dip in reflectance indicates resonant wavelength with highest average field enhancement in gaps.

Conclusions

- Optical microscopy of photogenerated bubbles provides a quantitative measure of gas evolution.
- Presence of bubble could block possible sites of study due to gas/solid interface. Fluorescence method avoids bubble issues.
- Plasmonic antenna arrays show resonance with high fields in gap regions. Future work: test water-splitting catalysts with arrays.

Acknowledgements

Funding provided by the Applied Materials Graduate Fellowship program and the Global Climate and Energy Project (GCEP). Thanks to Deirdre O’Carroll, Vivian Ferry, Shannon Boettcher and Ryan Briggs for their help.

*Email: ajl@caltech.edu