Seal Integrity for Geologic Sequestration of CO₂

Mark Zoback
Amie Lucier, Hannah Ross, Laura Chiaramonte

Department of Geophysics
Stanford University
Seal Integrity for Geologic Sequestration of CO$_2$

With assistance from
Carolyn Seto, Herve Gross, Kristian Jessen, Taku Ide

Department of Petroleum Engineers
Stanford University
Geomechanics and Seal Capacity

In all potential reservoirs

• How will the CO₂ injection process influence the reservoir/seal?

In depleted oil and gas reservoirs

• Did production and depletion affected the reservoir/seal?

• What are the initial trap and seal mechanisms governing reservoir capacity?
In all potential reservoirs

• How will the CO₂ injection process influence the reservoir/seal?

In depleted oil and gas reservoirs

• Did production and depletion affected the reservoir/seal?

• What are the initial trap and seal mechanisms governing reservoir capacity?
Geomechanical Characterization

The Stress Tensor

\[
S = \begin{bmatrix}
S_{H\text{max}} & 0 & 0 \\
0 & S_v & 0 \\
0 & 0 & S_{h\text{min}}
\end{bmatrix}
\]

- Vertical Stress
- Least principal stress
- Max. horizontal stress

Stress Orientation → Orientation of Wellbore Failures

\[
S_v(z_0) = \int_{0}^{z_0} \rho g \, dz
\]

\(S_{h\text{min}} \Leftarrow \text{LOT, XLOT, minifrac}\)

\(S_{H\text{max}} \text{ magnitude} \Leftarrow \text{modeling wellbore failures}\)
Geomechanical Characterization

- Pore pressure \(P_p \) \(\leftarrow \) Measure, sonic, seismic
- Rock Strength \(\rightarrow \) Lab, Logs, Modeling well failure
- Faults/Bedding Planes \(\rightarrow \) Wellbore Imaging
CO2 Sequestration
Seal Integrity
Research Projects

Powder River Basin
- CBM Production
- ECBM/Environment/Sequestration
- Collaboration with Western Res. Foundation

Mountaineer, West Virginia
- Deep aquifer injection
- Point source - Coal Burning power plant
- Collaboration with DOE, NETL, Battelle, AEP, BP, Schlumberger, Ohio Coal Development Office

Teapot Dome
- Depleted Oil and Gas Reservoir
- Sequestration seal capacity
- Collaboration with LLNL, DOE, RMOTSI
Teapot Dome Project

Principal Objectives:

• Assess possible leakage mechanisms and the assessment of volume, rates, location & probability of CO₂ leaks

Unique for carbon-storage research:

• High well density, abundant data, excellent geological characterization of all units

• Federal ownership ➔ data sets and experimental results be public domain, long-term stable research
Teapot Dome Field

- 1300 wells total ~ 600 currently producing
- Over 100 years production data
- Target reservoirs for CO$_2$ injection 500’ – 8000’
- 9 oil and gas bearing formations,
- > 6 aquifers of varying salinity
- Recoverable reserves ~600 million barrels oil, 0.5 billion ft3 gas
- Excellent Seismic Data
Teapot Dome Project

• 55 - 75 million years old

• Target reservoirs:
 – Diverse rocks
 – Oil & water bearing
 – 500’ – 8000’ depth range

• CO₂ injection planned for summer of 2005
Production and/or Injection can Induce Fault Slip

Production Induced Faulting
Normal Fault Regimes

Valhall Chalk Reservoir, North Sea

Injection Induced Faulting
All Faulting Regimes

Rangely Oil Field, CO
Fluid Injection and induced seismicity

Gas Cloud
Seismic Push-down

Modified from Zoback and Zinke, 2002

Modified from Raleigh et al., 1976
Assessment of Potential Fault Slip

Calculating Fault Slip Potential Using the Coulomb Criterion

\[\tau = \mu(S_n - P_p) \]

\[P_{p\text{_crit}} = S_n - \tau / \mu \]

\[P_{p\text{_crit}} - P_{\text{ref}} = \text{Critical Pressure Perturbation} \]

\[S = \begin{bmatrix} S_{H\text{max}} & 0 & 0 \\ 0 & S_v & 0 \\ 0 & 0 & S_{h\text{min}} \end{bmatrix} \]

\[\hat{t} = S \hat{n} \]

\[S_n = \hat{n} \cdot t \]

(Wiprut & Zoback, 2002)
Analogy with Assessment of Leakage Potential in North Sea Fields

Can predict the rate & volume of injection needed to trigger slip on faults of different orientations and potential loss of seal integrity

(Wiprut & Zoback, 2002)
AEP Mountaineer Project: New Haven, WV

- Field investigation of CO2 injection in a deep saline aquifer
- 183 Coal burning plants in Ohio River Valley
- 7 Megaton of CO2 emitted in 2000 at Mountaineer
- Collaboration with Battelle, DOE, NETL, AEP, Schlumberger, BP, Ohio Coal Development Office

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Period</th>
<th>Predominant Lithology</th>
<th>Formation</th>
<th>Thickness (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cambrian</td>
<td>Unconsolidated</td>
<td>Arkose</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Ordovician</td>
<td>Limestone/</td>
<td>Black River</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>Ordovician</td>
<td>Dolomite</td>
<td>Wells Creek</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>Ordovician</td>
<td>Dolomite</td>
<td>Beechmontown</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>Ordovician</td>
<td>Sandstone</td>
<td>Falls Run</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>Cambrian</td>
<td>Dolomite</td>
<td>Copper Ridge</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td>Cambrian</td>
<td>Dolomite</td>
<td>Noblesville</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Cambrian</td>
<td>Dolomite</td>
<td>Marysville</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>Cambrian</td>
<td>Sandstone</td>
<td>Niceville</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Pro cambrian</td>
<td>Gravels</td>
<td>(Pro cambrian)</td>
<td>—</td>
</tr>
</tbody>
</table>
Low S_{hmin} magnitude in the Rose Run injection zone is beneficial to hydraulic fracturing and sequestration potential.
Reservoir Simulations with Hydraulic Fractures to Stimulate Injection

Hydraulic Fracture:
1000 mD Permeability

Geostatistics based on data from a Single well

6 km x 6 km
Simulation Results After 30 Years

Realization 4: With Hydraulic Fracture

CO₂ Saturation

Formation Pressure

Permeability x 10

Base Permeability

CO₂ Saturation [%]

Formation Pressure [MPa]

<table>
<thead>
<tr>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td>34</td>
</tr>
</tbody>
</table>

1 km

N
Preliminary Reservoir Simulations

Cumulative CO₂ Injection

- HF_R4_k10
- RO_k10
- HF_R4_base
- RO_base

Injection Rate

- HF_R4_k10
- RO_k10
- HF_R4_base
- RO_base
Potential for Induced Seismicity?

Optimally oriented strike-slip faults

Need Seismic Monitoring of Sequestration Sites
Pore Pressure Increase Precedes CO₂ Saturation Front

Simulation Results After 30 Years
Realization 4: With Hydraulic Fracture

CO₂ Saturation
Formation Pressure

Permeability x 10

CO₂ Saturation [%]
Formation Pressure [MPa]

| 1 km |

N
• Adsorption of CO$_2$ is critical as geological seals are likely to be ineffective at shallow depth

• Much less is known about detailed geology than oil and gas reservoirs. Coals tend to be very heterogeneous.

• Complex flow and surface chemistry in matrix/fracture systems

• Recovery of CH$_4$ may offset cost of sequestration
Coal Bed Methane Production and CO₂ Sequestration

DESORPTION

Desorption from Internal Coal Surfaces

DIFFUSION

Diffusion Through the Matrix and Micropores

DARCY FLOW

Fluid Flow in the Natural Fracture Network

Coal rank

<table>
<thead>
<tr>
<th>% carbon</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peat</td>
<td><50</td>
</tr>
<tr>
<td>Lignite</td>
<td>60</td>
</tr>
<tr>
<td>Sub-bituminous coal</td>
<td>75</td>
</tr>
<tr>
<td>Bituminous coal</td>
<td>85</td>
</tr>
<tr>
<td>Anthracite</td>
<td>90</td>
</tr>
<tr>
<td>Graphite</td>
<td>>95</td>
</tr>
</tbody>
</table>

Advanced Resources International, 2004
Powder River Basin, Wyoming and Montana

- Extensive CBM development
- ~12,000 wells already drilled
- ~50,000 wells to be drilled
- Environmental problems due to water production could be alleviated (in part) by CO$_2$ sequestration
- Potential for CO$_2$ sequestration and CH$_4$ production
Preferential adsorption of CO$_2$ over CH$_4$, will displace the CH$_4$ from the coal matrix.

T=22°C

CO$_2$ adsorption
CO$_2$ desorption
CH$_4$ adsorption
CH$_4$ desorption
N$_2$ adsorption
N$_2$ desorption

Courtesy Tony Kovscek and G.-Q. Tang
Hydraulic Fracturing Needed to Stimulate Injection for CO\textsubscript{2} Sequestration and CH\textsubscript{4} Recovery

Schematic of horizontal hydraulic fracture placed at base of injector
Preliminary 3D Model
(Powder River Basin Model)

CBM well

Grid dimensions:

\[\text{nx} = 45, \text{dx} = \sim 50 \text{ m} \]
\[\text{ny} = 44, \text{dy} = \sim 50 \text{ m} \]
\[\text{nz} = 6, \text{dz} = \] top three grid layers are 5 m and bottom three grid layers are 1.6 m

\[L = 2200 \text{ m} \]
\[H = 310 - 360 \text{ m} \]
\[\text{Big George coal} \]
\[h = \sim 20 \text{ m} \]
\[\text{N} \]
\[L = 2250 \text{ m} \]
Cleat Permeability Realizations

Cleat Properties are a Major Factor
Cleat Permeability Realizations

Cleat Properties are a Major Unknown
CO$_2$ Adsorption After 1800 Days

Base case with matrix shrinkage and swelling

Hydraulic fracture case with matrix shrinkage and swelling (orientated NW-SE)
Gas Saturation in the Coal Cleats After 1800 Days

- **Base case with matrix shrinkage and swelling**
- **Hydraulic fracture case with matrix shrinkage and swelling (orientated NW-SE)**

Realization 1

- Production well
- Injection well
Cumulative CO₂ Injection

Cumulative CO₂ Injection at Surface Conditions

- **Y-axis:** Ton (ranging from 0 to 2.0e+6)
- **X-axis:** Time (days) (ranging from 0 to 1800)

Legend:
- Red line: Base case with no matrix shrinkage and swelling
- Blue dashed line: Hydraulic fracture case with no matrix shrinkage and swelling
- Green line: Base case with matrix shrinkage and swelling
- Pink dashed line: Hydraulic fracture case with matrix shrinkage and swelling
CO₂ Injection Rate and Hydraulic Fracturing

CO₂ Injection Rate at Surface Conditions

- Injection rate ~2-3x higher with introduction of hydraulic fracture
- Start see decline in injection rate, probably due to onset of matrix swelling

Realizations 1 and 2

- **Green dotted line**: Base case with matrix shrinkage and swelling, Realization 1
- **Green line**: Base case with matrix shrinkage and swelling, Real 2
- **Pink dotted line**: Hydraulic fracture case with matrix shrinkage and swelling, Real 1
- **Pink line**: Hydraulic fracture case with matrix shrinkage and swelling, Real 2
CH$_4$ Production Offsets
Cost of Sequestration

Cumulative CH$_4$ Production
at Surface Conditions

Realization 1

Mcf

Time (days)

Prod 4
Prod 2
Prod 4
Prod 2
Prod 1
Prod 1
Prod 3
Prod 3

Base case with matrix shrinkage and swelling
Hydraulic fracture case with matrix shrinkage and swelling
For each case there are four producers; Prod = Producer
Geological Storage Potential

Outstanding Questions

• Improved models of shrinkage and swelling as well as transport and adsorption processes. This requires new data on adsorption isotherms for wet coal

• Characterizing and modeling heterogeneities (challenges for transport, geostat and reservoir simulation)

• Assessing the need for hydraulic fracturing/appropriate stress/depth conditions

• Assess the potential for ECBM and CO₂ Sequestration in regions where poor water quality prevents CBM production
Outstanding Questions

- Flow characterization and modeling in the absence of comprehensive data (challenges for geostatistics and reservoir simulation)
- Limited porosity and permeability of many deep aquifers provide challenges for sequestering significant volumes of CO₂. Hydraulic fracturing needed to stimulate injectivity
- Geomechanical characterization in the absence of comprehensive data (stress tensor, elastic moduli, fractures and faults, porosity, permeability, etc.)
- Assessing the potential for injection-induced fault slip and/or seismicity
Geological Storage Potential

Outstanding Questions

• Assessing initial trap/seal mechanisms
• Assessing the effects of production and depletion
• Predicting whether sequestration will affect seal (hydraulic fracturing of cap rock)
• Assessing the potential for injection-induced fault slip and/or seismicity
• Development of comprehensive geomechanical model requires modern well data
Seal Integrity for Geologic Sequestration of CO$_2$

FOR MORE INFORMATION
PLEASE VISIT POSTERS

Amie Lucier, Hannah Ross, Laura Chiarmonte