Atomic Level Control of Catalyst Structure for Clean Fuel Production

Nuoya Yang
Bent research group, Department of Chemical Engineering
GCEP symposium
11/2 ~ 11/3/2016
Syngas conversion – convert carbon in waste to valuable chemical
Atomic Layer Deposition (ALD)--controllable modification of catalyst structure and composition

Data shown here are 5 cycles MnO
MnO improves activity and C_{2+}oxy selectivity
ALD-MnO support maintains Rh nanoparticle size

- MnO support didn’t change Rh size distribution
- co-IMP leads to smaller Rh size

<table>
<thead>
<tr>
<th>Diameter (nm)</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh/SiO₂</td>
<td></td>
</tr>
<tr>
<td>Rh/MnO/SiO₂</td>
<td></td>
</tr>
<tr>
<td>Rh-Mn (co-IMP)/SiO₂</td>
<td></td>
</tr>
</tbody>
</table>
ALD-MnO overlayer — unstable upon CO adsorption

- XPS: MnO/Rh/SiO$_2$ before and after CO adsorption

![Graph showing Mn 3d and Rh 3d peaks before and after CO adsorption]

- Mn/Rh atomic ratio:
 - 1.95 before CO
 - 1.15 after CO

- MnO not stable upon CO adsorption
Infrared spectra -- CO adsorption on Rh surface

- Rh-MnO interface sites weaken CO bond, increase activity.
- Some stepped/defect sites on Rh nanoparticles may be blocked by MnO during impregnation.
- Blocking stepped sites could decrease methane selectivity.
DFT – MnO stabilizes key transition state

Rh-MnO interface:
• MnO stabilizes the transition state for C_{2+}oxy synthesis, improves selectivity.

Transition state

<table>
<thead>
<tr>
<th>Surface</th>
<th>CH_2-H^* (CH$_4$ selectivity)</th>
<th>$\text{H-CH}2$CO* ($C{2+}$oxy selectivity)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rh(111) MnO*/Rh</td>
<td>Rh(111) MnO*/Rh</td>
</tr>
<tr>
<td>Free Energy (eV)</td>
<td>1.18 1.16</td>
<td>1.02 0.78</td>
</tr>
</tbody>
</table>

DFT calculation by Jong Suk Yoo
Summary

- By controlling the catalyst structure on atomic level, we identified that Rh-MnO interface site is responsible for activity and selectivity enhancement for C_{2+}oxy production.
- MnO overlayer is not as effective, due to the instability upon CO adsorption.
- Similar strategy can be generalized to other heterogeneous catalyst systems to understand the active sites.
- Guide the rational design and enable highly controlled synthesis of heterogeneous catalysts.
Acknowledgements

Prof. Stacey Bent
Bent group
Prof. Jens K. Nørskov
Jong Suk Yoo, Julia Schumann, Pallavi Bothra

Global Climate & Energy Project
STANFORD UNIVERSITY

Thanks for your attention!