Solar Fuels From Light & Heat

Xiaofei Ye, Liming Zhang, Madhur Boloor, Nick Melosh
Will Chueh

Materials Science & Engineering, Precourt Institute for Energy
Stanford University
chuehlab.stanford.edu
Enhance solar utilization

5% Ultraviolet 43% Visible 52% Infrared

Dionne

Photo-electrochemical cell

O₂/H₂O

E₀

Eᵥb

Ectype

hv

H⁺/H₂

Semi-conductor Anode Metal Cathode

Power (W m⁻² nm⁻¹)

1.8 eV

Wavelength (nm)
Combining heat & light: what’s possible?

![Diagram showing the relationship between temperature and solar-to-fuel efficiency.](Diagram)

Graph 1:
- **Y-axis:** \(\frac{J_{H_2} \cdot HHV}{P_{\text{sun}}} \)
- **X-axis:** Temperature (T in K)
- **Legend:**
 - Thermal energy
 - Electrical energy

Graph 2:
- **Y-axis:** Solar-to-Fuel Efficiency
- **X-axis:** Energy Gap (E_g in eV)
- **Note:** 10% efficiency level marked as unreachable temperature.

Reference:

chuehlab.stanford.edu
Can thermal energy make existing materials better?

Low mobility, high stability semiconductor: \(\text{Fe}_2\text{O}_3 \)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti doped (\alpha)-Fe(_2)O(_3)</td>
<td>30 nm</td>
</tr>
<tr>
<td>Pt</td>
<td>200 nm</td>
</tr>
<tr>
<td>Al(_2)O(_3)(0001)</td>
<td></td>
</tr>
</tbody>
</table>

Pulsed-Laser Deposition

TEM

SEM

AFM
Enhancement with temperature & light intensity

0.1 M NaOH pH = 13

Solar simulator
Thermocouple
Nitrogen
Water bath
Stirrer

Enhancement with temperature & light intensity:

Δη ~ 70 mV

E vs RHE [V]

J [mA cm$^{-2}$]

5%Ti-Fe$_2$O$_3$

9 suns
1 sun

0.8 1.0 1.2 1.4 1.6 1.8

0.0 0.1 0.2

1.19 V
1.24 V

72 °C
48 °C
25 °C
7 °C
Enhancement with temperature & light intensity

Baseline: 25 °C 1 sun

72 °C 1 sun

72 °C 9 sun

Relative Potential [V]

\[V_{eq}, \eta, V_{ph}, V_{on} \]
Thermally-enhanced fill factor

[Graph showing J vs. E for 0.1% Ti-doped Fe$_2$O$_3$ under different temperatures (7 °C, 25 °C, 48 °C, 72 °C) and light conditions (9 suns, dark). The graph indicates an increase in current density (J) with temperature and light exposure.]

ΔE [V] vs. Temperature

- 0.45 \rightarrow 4.5 mA cm$^{-2}$
- 160 mV
Another low-mobility semiconductor: BiVO₄

Effect of doping

Effect of catalysts

0.5 M K₃PO₄ buffered pH = 7 Electrolyte
Thermally-enhanced saturation current

Significant enhancement in photocurrent without significant decrease with photovoltage

1 mM [IrCl₆]⁴⁻/0.1 mM [IrCl₆]³⁻
Stability

Fe$_2$O$_3$

9 suns, $I = 2$ mA cm$^{-2}$
70°C

BiVO$_4$

1 sun $E = 0.6$V vs. RHE

42°C

25°C

9°C

chuehlab.stanford.edu
Thermally-enhanced PEC

PEC / Solar cells

cooling

chuehlab.stanford.edu
Going > 100°C: an all-oxide approach

< 100 °C

300 - 700 °C

Gas Bubbles

Light Absorber

Liquid Electrolyte

Membrane

Light Absorber

Proton-conducting Oxide

Air

Membrane

eSolar

chuehlab.stanford.edu
A new class of solid state PEC for concentrated sunlight
Compatible with elevated temperature
Single device, isothermal
Photon absorption
Electron/hole pairs excitation
Carrier diffusion
Semiconductor/Mixed Conductor Heterojunction

• Light absorber/MIEC interface:
 – Electrons: thermionic emission
 – Holes: mostly reflected
Semiconductor/Mixed Conductor Heterojunction

2H₂O(g) + 4e⁻ → 2H₂(g) + 2O²⁻

- MIEC/gas interface
 - Electron transfer, HER

Paper submitted
chuehlab.stanford.edu
Semiconductor/Mixed Conductor Heterojunction

- Gas diffusion (stagnation layer)
 - H_2O: continuously supplied, diffuse to the surface
 - H_2: diffuse away from surface, then removed
Oxygen ions transport to the air side and react with holes
• Broad maximum at ~750 K, 17 %
• Below 700 K: slow thermionic emission
• Above 700 K: insufficient photovoltage
Figure 1
Figure 2
Figure 5

(a) SEM image of macroporous BiVO₄

(b) SEM image of nanoporous BiVO₄

(c) Current density (mA/cm²) vs. E (V) vs. RHE graph for dark current, macroporous BiVO₄, and nanoporous BiVO₄.
Figure 6

(a) Current density (mA/cm2) vs. E (V) at different temperatures.

(b) Current density (mA/cm2) at 0.80 V vs. RHE for different temperatures.

(c) Comparison of current density at 0.80 V vs. RHE for Small BiVO$_4$ NPs and Large BiVO$_4$ NPs at different temperatures.
Figure 8

The figure depicts the relationship between current density and Voltage (V) vs. RHE for different temperatures. It shows a set of curves for 9°C, 25°C, 42°C, 61°C, and 80°C, illustrating how the current density changes with increasing temperature and voltage.