Stability of Organic Materials

Anders Hagfeldt
Dept. of Physical Chemistry
Ångström Solar Center
Uppsala University
Anders.Hagfeldt@fki.uu.se
Specific features of DSC

• Charge separation and transport are separated

• Operation is based on kinetics and not a built-in electric field

• Kinetics and energetics are dynamic variables

• Dark and illumination measurements are not often correlated

• The processes are controlled at the semiconductor/dye/electrolyte interface
Possible degradation mechanisms in a DSC

- **Substrate**
- **TiO$_2$**
- **Dye**
- **Electrolyte**
- **Catalyst**
- **Substrate**
- **Interconnects**

- Corrosion
- Breaking
- Surface states
- Photocatalytic
- Loss of particle and substrate contacts
- Adsorption of contaminants (e.g. Pt)
- Ligand losses
- Desorption
- Aggregation
- Solvent degradation
- Evaporation
- H$_2$O and O$_2$ contamination
- Conversion of I$_2$ to IO$_3^-$
- Release of Pt
- Adsorption of contaminants
- Corrosion
- Loss of contacts
Properties of the molecular components

- The dye is not stable in solution
- The oxidized dye in the DSC device has a life-time of about 1 second
- The intrinsic TiO$_2$ is an insulator
- The iodine based electrolyte is highly corrosive

Why does it work?
Stability arises from molecular interactions

Ex. The effect of the additive in the electrolyte

The additive improves the photovoltage
 - reduce back reaction by blocking the surface
 - shifting the CB – base effect

ECN, The Netherlands, showed that the additive improves stability

Additives: 4TBP (4-tert-butyle-pyridine)
Resonance Raman Spectroscopy

Green laser
\(\lambda = 514 \text{ nm} \)

Intensity: \(2 \times 10^9 \text{ W/m}^2 \) !!

Complete DSC devices

3 mm
Variation of electrolyte composition

A: Solvent

B: Solvent, 0.5 M LiI

C: Solvent, 0.5 M LiI, 10 mM I$_2$

D: Solvent, 0.5 M LiI, 50 mM I$_2$
Effect of the additive

4-tert-butylpyridine suppresses ligand substitution
DSC Performance

Efficiency
- 11% for an area < 0.2 cm²
- 10.1% for an area > 1 cm²

Kroon et al., Proc. 19th EU PVSEC, June 2004, Paris

Stability
- Dye stability is at least 10^8 turnovers (corresponds to 15 years in sunlight)
- 6-7% efficiency (dark, 85 °C, 1000h)
- 5% efficiency (1 sun, 45 °C, 1000h)

Wang et al., Nat. Mater. 2 (2003) 498,
Observations: DSC stability

- Results are lab-specific; cell composition, purity of components, cell processing play an important role in the stability of the cells

- Compromise between top efficiencies and stability (dyes and electrolytes are modified)

- Importance of dye adsorption sites; Photocurrent imaging techniques reveal that some spots of the cell degrade faster than others
Observations: DSC stability, cont.

- Stability results depend on operating conditions (open circuit, short circuit, working point)

- Combined thermal annealing (85 °C) and illumination (1 sun) degrades the cell (loss of iodine)

- Recovery effects: Degradation of cells undergoing IEC tests (qualification test for Si-cells – dark, 85 °C) can be compensated by illumination, resulting in a recovery of the cell performance. Another recovery effect is shown on next slide. The effects depend on which electrolyte is used.
Example of a recovery effect

Plastic DSC cell developed for indoor applications

Exposed to light intensities where the photocurrent saturates, the power of the cell decreases. The power recovers after having kept the cell in darkness for some time.
Some conclusions

- Almost all scientific efforts have dealt with efficiency issues.
- The molecular device is stable – not the molecular components on their own. The kinetics of the electron transfer processes between the molecular components need to be well balanced.
- Standard tests for Si-cells are not relevant for DSC (IEC tests can be too pessimistic and too optimistic).
What do we do?

- Focus on improving cell *performance*, i.e. both efficiency and stability
- Need of general preparation protocols
- Develop relevant accelerated tests
- Tests under real outdoor conditions
- Develop an understanding of the molecular system – measurement techniques, simulations
Where are the traps?

- Continuous DOS in the band gap

- Mesoporous TiO$_2$
- Single crystal rutile
- Same number of states

- Synchrotron radiation: 150 eV
- 10$^{-7}$ mbar
- Resolution < 0.1 eV at FWHM
The TiO$_2$/Dye/Electrolyte Interface

- N3/TiO$_2$ Interface
- Electron injection followed by Li$^+$ insertion
- Chemical nature of the trap states
Development of measurement techniques – a DSC tool-box

The challenge:
- Determine the internal dynamics on complete devices under working conditions

Criteria
- Complete Devices
- Real Conditions
- Reasonable Measurement Time

IMPS, IMVS, PIA, Charge extraction, ...
Ex. Photoinduced absorption spectroscopy

Setup:
- **Excitation:** HeNe CW-laser, 543.5 nm
- **Light Path:**
 - Halogen lamp
 - Water filter
 - Sample
 - Monochromator
- **Detection:**
 - Si photodiode
 - Current amplifier
 - Lock-in amplifier
 - Signal

Signal Processing:
- **Excitation Signal:** 4 - 400 Hz
- **Absorbance Signals:**
 - ΔAbsorbance (low frequency)
 - ΔAbsorbance (high frequency)
- **Phase Shifts:**
 - No phase shift
 - 90° phase shift

- **Measurements:**
 - ΔA ~ 10^{-6}
 - Complete solar cells or separate components
 - 0.1 Hz – 10 kHz
 - Combination with IMPS, ...
PIA of N3/ TiO₂

- 4 μm transparent mesoporous TiO₂
- Modulation frequency: 17 Hz
- Excitation 2.4 mW cm⁻²
- Measurement time: < 1h

Life-time of Dye⁺ + e⁻(TiO₂): 1 ms under 1 sun
How to compete?
Cost/Performance

- Thin Film PV
- Continuous Process
- Batch

Decreasing production costs
How do we improve the performance?

Main losses

Design of new molecular components

- **Oxide**: Nanofibers
- **Dye**: HOMO/LUMO should be spatially separated
- **Electrolyte**: Efficient oxidant at the counter electrode and poor at the working electrode
How to decrease cost?

Low cost
Large volume production
Continuous production process
Plastic substrates

The Press-technique

TiO$_2$ powder,
Platinized Sb:SnO$_2$
Plastic cell stability at indoor light

Proven stability for > 10 000 h under continuous indoor illumination (250 Lux)

Performance satisfactorily for different types of indoor applications

> 10 000 h illumination @ 250 Lux

\[V_{oc} = 0.55 \text{ V} \]

\[I_{sc} = 7.7 \mu\text{A/cm}^2 \]

\[ff = 0.48 \]
Status Flexible DSC: Ångström Solar Center

<table>
<thead>
<tr>
<th></th>
<th>Technical Requirements</th>
<th>Market Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor Applications</td>
<td>Yes</td>
<td>? → Yes</td>
</tr>
<tr>
<td>Outdoor Applications</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Status Flexible DSC: Ångström Solar Center
Future work

- Basic research
 - Balancing the electron transfer processes
 - Control of the oxide/dye/electrolyte interface (why is the dye stable when it is adsorbed? Importance of adsorption geometry for stability, etc)
 - How to perform accelerated life-time tests

- Materials science aspects
 - For plastic cells in particular dyes and electrolytes
 - Continuous processing (low-investment costs, reliability)

- Market entry through niche applications