Compact Stellarator Research Opportunities

Hutch Neilson
for the NCSX Team

Princeton Plasma Physics Laboratory
Oak Ridge National Laboratory

GCEP Fusion Energy Workshop
Princeton, NJ
May 1, 2006
Topics

- Compact stellarator motivation.
- NCSX mission, design, and opportunities.
- Experimental program.
Axisymmetric Toroidal Plasmas Have Brought Magnetic Fusion Research a Long Way

Long record of accomplishments in performance and understanding.

Potential: Reactor-scale burning plasmas in ITER.

Practical issues: Disruptions, steady state, understanding of transport and energetic particle effects.
Compact Stellarator Benefits for Magnetic Fusion

Stellarators solve critical problems.
• Steady state without current drive.
• No disruptions: stable without feedback control or rotation drive.
• Unique flexibility to resolve 3D plasma physics issues.

Compact Stellarators have additional benefits
• Magnetic quasi-symmetry. In NCSX:
 – Quasi-axisymmetric configuration with effective ripple <1.5%.
 – Low flow damping, tokamak-like orbits ⇒ enhanced confinement
 – Makes full use of tokamak advances, allowing rapid and economical development.
• Lower aspect ratio than typical stellarators.
 – 4.4 in NCSX vs. ~11 in W7-X.
Stellarator Benefits Are Due to its 3D Geometry

- Stellarators create confining magnetic configuration with magnets alone.
 - Robust mode of operation, simple control.
- Compact stellarators take advantage of 3D shaping flexibility to design for additional attractive properties.
 - Compactness, good confinement, high-β stability, etc.
- The magnets can be designed to allow the shape to be varied.
 - Provides the flexibility needed to test the physics.

3D geometry produces benefits and costs. We need to quantify both.
Stellarators Are Making Good Progress

Large Helical Device (S/C magnets - Japan)
\[\beta \approx 4.5\% \]
\[T_e \approx 10 \text{ keV}, T_i \approx 10 \text{ keV}. \]
enhanced confinement.
2-minute pulses.

Helically Symmetric Experiment (U. Wisc.)
- Test and understand quasi-symmetry.

Wendelstein 7-AS (Germany)
\[\beta \approx 3.5\% \]
enhanced confinement.
density control & enhanced performance w/island divertor.

Wendelstein 7-X (Germany)
Optimized Design - S/C magnets
Under construction - Ops. In 2012
\[\langle \beta \rangle > 3.2\% \text{ maintained for } > 100 \tau_E \text{ in W7-AS} \]

- Peak \(\langle \beta \rangle = 3.5\% \)
- \(\langle \beta \rangle \)-peak \(\approx \) \(\langle \beta \rangle \)-flat-top-avg
 \(\Rightarrow \) very stationary plasmas
- No disruptions
- Duration and \(\beta \) not limited by onset of observable MHD
- High-\(\beta \) maintained as long as heating maintained, up to power handling limit of PFCs.
- \(\beta \) limit may be set by equilibrium degradation.
 \(\Rightarrow \) can avoid by design.

M. Zarnstorff (PPPL) & W7-AS Team.
NCSX Mission: Physics of Compact Stellarators

Acquire the physics data needed to assess the attractiveness of compact stellarators; advance understanding of 3D fusion science.

Understand…

- Beta limits and limiting mechanisms.
- Effect of 3D magnetic fields on disruptions.
- Reduction of neoclassical transport by QA design.
- Confinement scaling; reduction of anomalous transport.
- Equilibrium islands and neoclassical tearing-mode stabilization.
- Power and particle exhaust compatibility w/good core performance.
- Alfvénic mode stability in reversed shear compact stellarator.

Demonstrate…

- Conditions for high-beta, disruption-free operation.
NCSX Device is Designed for its Broad Mission

Stellarator
Major radius: 1.4 m
Magnetic Field (B)
 @ 0.2 s pulse: 2.0 T
 @ 1.7 s pulse: 1.2 T
Plasma current ≤350 kA.

Plasma Heating Flexibility (planned)
NBI: 6 MW (tangential)
ICH: 6 MW (high-field launch)
ECH: 3 MW

High β (4%) Plasma Scenario
$B = 1.2 \, T, \, P = 6 \, MW$
$(\tau_E = 2.9 \times ISS95 \approx L\text{-mode assumed})$
- $n_e = 6 \times 10^{19} \, m^{-3}$
- $T_i(0) = 1.8 \, keV$
- $v_i^* = 0.25$

coils cooled to cryogenic temperatures, vacuum vessel at room temperature.
NCSX Physics Design

- Plasma / coil configuration was optimized to realize target physics properties.

Plasma Cross Sections

Physics Properties

- 3 periods, low $R/\langle a \rangle$ (4.4).
- Quasi-axisymmetric with low ripple.
- Stable at $\beta=4.1\%$ to specific MHD instabilities.
- Reverse shear q-profile.
- 25% of transform from bootstrap.
- Good magnetic surfaces at high β.

Constrained by engineering feasibility metrics:
 - coil-coil spacing
 - min. bend radius
 - tangential NBI access
 - coil-plasma spacing.
NCSX Design Satisfies Physics & Engineering Criteria

• 18 modular coils (3 shapes)
 – Also TF, PF, and helical trim coils.

• Massively parallel computer optimization used to target required properties.
 – Over 500,000 designs analyzed.

• Required physics properties realized:
 – Low aspect ratio.
 – Stable at high beta.
 – Quasi-axisymmetric.
 – Flexible.

• Engineering feasibility metrics satisfied:
 – Coil-coil spacing
 – Coil bend radius
 – Coil-plasma spacing.

NCSX Plasma and Modular Coils
NCSX Coils Are Designed to Produce Good Surfaces at High β

- Explicit numerical design to eliminate resonant field perturbations
- ‘Reversed shear’ configuration \Rightarrow neoclassical healing of equilibrium islands and stabilization of tearing modes (already observed in LHD)
- What are the limits? How strong are flow & other kinetic effects?

Poincare: PIES, free boundary 3D equilibrium code. $\beta = 4\%$

$< 3\%$ flux loss.
NCSX Coils: Flexibility to Vary Physics Properties

- Magnet system has 4 coil sets
 - Modular, TF, PF, trim.

Also

- Can externally control iota.
- Can increase ripple by ~10x, preserving stability.
- Can lower theoretical β-limit to 1%.
- Can cover wide operating space in β (to at least 6%), I_p, profile shapes.

Shear controlled by varying plasma shape
$\beta=4.2\%$, full current, fixed profiles.
Properties Are Determined By Plasma Shape

External rotational transform (iota) controlled by plasma shape at fixed profiles.

\(\beta = 4.2\% \), full current
Trim coils have been very effective on existing experiments:

- W7AS and LHD, small saddle trim coils are used to control resonant fields to control islands.
- On W7AS, trim coil was used to increase the maximum beta by ~50%, probably by controlling the edge magnetic stochasticity.

NCSX external trim coils being designed for:

- Control resonant field perturbations from assembly errors and plasma currents.
- Give fine control on 3D plasma shape, to control physics.
- Divertor strike-point control.

Candidate trim-coil arrays of saddle coils, mounted outside modular coil shell being analyzed.

Control strategy to be developed...
Vacuum Vessel Provides Good Diagnostic Access

Physics Requirements

- Access for heating and diagnostic viewing.
- Sufficient interior space for plasma, boundary layer, and PFCs.
- High-vacuum environment for good plasma performance.
- Low field errors.

Design

- About 100 ports, filling all available openings in surrounding magnets.
- Vacuum boundary inside coils, as far from plasma surface as possible.
 - Shell geometry similar to plasma’s. Tolerance ±5 mm.
- Bakeable to 350 C.
- Inconel material.
NCSX Offers a Robust Divertor Concept

• Divertors in bean tip region

• Strong flux-expansion (> 10:1) always observed in bean-shaped cross-section. Allows isolation of PFC interaction.

• Can we design/control divertor to accommodate a wide range of configurations?
Ex-Vessel Magnetic Diagnostics Designed for Reconstruction

- Saddle coils mounted on vessel
- ~2500 free-boundary equilibria analyzed to identify critical regions for measurement
- Array distributed across 3 periods + extra coils to sense symmetric and non-symmetric components

Several strategies being developed for equilibrium reconstruction:
- V3FIT – reconstruction code based on VMEC (cannot represent islands)
- PIES – 3D equilibrium with islands
- 3D external flux fit (e.g. filament code), to find boundary shape and characteristics

N. Pomphrey, PPPL
E. Lazarus, ORNL
NCSX Construction is Well Under Way

Vacuum Vessel

Segment #1 of 3
Sealed for Pump-down

Modular Coils

Completed Coil
(#1 of 18)

Construction Will be Completed in 2009
NCSX Research Program Will Address Physics Issues for Compact Stellarator Attractiveness.

Phase / Research Goals

<table>
<thead>
<tr>
<th>Phase</th>
<th>FY-05</th>
<th>FY-06</th>
<th>FY-07</th>
<th>FY-08</th>
<th>FY-09</th>
<th>FY-10</th>
<th>FY-11</th>
<th>FY-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1 & 2 Equipment</td>
<td>Fabrication Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Plasma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 3 Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 4 Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 5 Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Equipment

1. **Stellarator Acceptance Testing**
 - Verify construction accuracy
 - First Plasma
 - **Stellarator @B = 0.5 T**
 - Ohmic heating, 150 C bake.
 - E-beam & ex-vessel magnetics

2. **Magnetic Configuration Studies**
 - Vacuum flux surface documentation.
 - Magnetic configuration control w/ coils.
 - **Stellarator @B = 0.5 T**
 - **Stellarator @B = 1.2 T**
 - **1.5 MW NBI, NB Armor, 350 C bake**
 - Thomson scattering, in-vessel magnetics, interferometer/polarimeter, SX arrays

3. **1.5MW Initial Experiments**
 - Explore plasma operating space
 - Confinement, stability, operating limits
 - **Stellarator @B = 1.2 T**
 - 1.5 MW NBI, NB Armor, 350 C bake
 - Thomson scattering, in-vessel magnetics, interferometer/polarimeter, SX arrays

4. **3MW Heating Experiments**
 - Confinement vs. 3D shape
 - Stability at moderate $|\beta|$ vs. 3D shape
 - Local transport, effects of quasi-symmetry
 - SOL characterization.
 - Transport barriers & enhanced confinement.
 - **Stellarator @B = 2 T**
 - 3 MW NBI, Full liner
 - Diag. beam, CHERS, MSE
QPS Physics Mission Complements that of NCSX

Exploits quasi-poloidal symmetry to advance physics understanding

- This magnetic geometry allows low damping of the poloidal flows that most effectively disrupt turbulence causing anomalous transport
- Low neoclassical and anomalous transport (low effective ripple; low poloidal viscosity
 ⇒ large sheared E x B flows)
- Long region of low curvature and short high-field region of higher curvature increases stability for trapped electron and ITG modes; instabilities may be different in this geometry
- Variation of B in the toroidal direction allows reduction of the bootstrap current and damping of toroidal flows

Robust equilibrium & healing of magnetic islands
Extends stellarator scaling to very low aspect ratio

QPS Status: in prototype fabrication and R&D; proposed for construction.
Compact Stellarator Research Will Advance Fusion Science in Unique Ways

- Can limiting instabilities, such as external kinks and neoclassical tearing modes, be stabilized by external transform and 3D shaping? How are the non-linear dynamics and disruptions affected? How much external transform is enough? What limits beta?

- Can the collisionless orbit losses from 3D fields be reduced by designing the magnetic field to be quasi-axisymmetric? Is flow damping reduced?

- Do anomalous transport reduction mechanisms that work in tokamaks transfer to quasi-axisymmetric stellarators? How much effective-ripple is too much?

- How do stellarator characteristics such as 3D shape, islands and stochasticity affect the boundary plasma and plasma-material interactions?
Energy Vision: a More Attractive Fusion System

Vision: A steady-state toroidal reactor with
- No disruptions
- No near-plasma conducting structures or active feedback control of instabilities
- No current drive (⇒ minimal recirculating power)
- High power density (~3 MW/m²)

Likely configuration features (based on present knowledge)
- Rotational transform from coils and self-generated bootstrap current (how much of each?)
- 3D plasma shaping to stabilize instabilities (how strong?)
- Quasi-axisymmetry to reduce ripple transport, alpha losses, flow damping (how low must ripple be?)
- Power and particle exhaust via a divertor (what topology?)
- $R/\langle a \rangle \sim 4$ (how low?) and $\beta \sim 4\%$ (how high?)

Design involves tradeoffs.
Need experimental data to quantify, assess attractiveness.
Summary

• The NCSX project is implementing an optimized 3D system to test compact stellarator benefits.
 – Low-R/⟨a⟩, high-beta, quasi-axisymmetric stellarator plasma.
 – Flexible coil set and vacuum vessel
 – Component geometries determined by physics optimization.

• The compact stellarator offers unique research opportunities.

• The NCSX will be operated as a collaborative experiment.
 – Opportunities for U.S. and international collaborators.