Overview of
The Global Climate and Energy Project

Lynn Orr, GCEP Director
The Need for Technology

• Concentrations of CO\textsubscript{2} will rise above current values (380 ppm), even under the most optimistic scenarios.

• Stabilization will require that emissions peak and then decline. Peak timing depends on the stabilized concentration.

• Improvements in efficiency, introduction of renewables, nuclear power, … all help.

• New technology will be needed for the really deep reductions.

Source: IPCC 2007
The Global Climate and Energy Project

Goals
- Fundamental, precommercial research
- Novel technology options for energy conversion and utilization
- Impact in the 10-50 year timeframe

Strategy
- Step-out research: revisit the fundamentals and explore new approaches
- High risk / high reward

Budget
- $225M commitment

Participants
- Industrial sponsors
- Academic institutions - Stanford and an increasing number of other universities worldwide
Current Portfolio

- $72.1M committed
- 47 3-year projects
- 69 investigators
- 20 institutions
- 225 students

Funding Distribution

Participating Institutions
Exergy Flow of Planet Earth (TW)

Current Global Exergy Usage Rate ~ 15 TW (0.5 ZJ per year)

Exergy Flow of Planet Earth (TW): Direct Solar Resource

Research Examples
- Solar Area

Solar electricity
- Organic photovoltaics
- Silicon-based quantum structures
- High efficiency thin-film concepts
- Efficient photon collection

Solar hydrogen
- Photoelectrochemical water splitting
Exergy Flow of Planet Earth (TW):

Bio Resources

\[(1\, \text{ZJ} = 10^{21}\, \text{J}) \]
Research Examples
- Bio Area

Biomass
- Genetic engineering of cellulose accumulation

Bio-hydrogen
- Hydrogenase enzyme
- Genetic evolution of biological systems (bacteria) to produce hydrogen

Bio-electricity
- Direct current extraction from the chloroplast of photosynthetic cells
Exergy Flow of Planet Earth (TW):
Fossil Hydrocarbon Resource

(1 ZJ = 10^{21} J)
Research Examples
- Carbon Mitigation Areas

Advanced combustion
- High-efficiency IC engines with theoretical efficiency limits of ~ 60%

CO₂ separation
- Novel nanostructured polymeric and inorganic membrane materials

CO₂ sequestration
- Study of the long-term stability and seal integrity of geologic structures (aquifers, oil and gas reservoirs)

- Cardo polyimide hollow fiber membrane

- Membrane reactors combining NG reforming and C capture

- Hydrotalcite membrane

- Integrated coal thermal conversion process in supercritical conditions using aquifer brine as a solvent and storage medium
GCEP Goals

- A research-base for technologies that would permit substantial reductions in greenhouse gas emissions due to energy use
- A highly trained pool of researchers to address the remaining technological issues
- A better-informed technical community concerning the technical barriers and potential solutions concerning greenhouse gas emissions from energy production and utilization
- A model for industry-sponsored research to address global technological issues
Advanced Electricity Infrastructure

- Opportunity to reduce CO$_2$ emissions
 - 7-10% of electricity generated is lost through transmission and distribution
- Understand the needs and impacts to integrate other GCEP portfolio areas with electricity infrastructure,
 - e.g. advanced combustion, renewables, transportation
- Enable the integration of new technologies and infrastructure paradigms at a national and global scale.
The Workshop

• Define the technical issues
• Identify research opportunities that are relevant to GCEP and address the technical issues
• Develop a portfolio of fundamental research in advanced electricity infrastructure
Questions for the Workshop

• What are the research priorities in your area of investigation and why?
• What barriers exist to successful research and what breakthroughs are needed?
• What are the opportunities for fundamental, academic research to develop pathways for technologies to overcome the barriers?
• Where do you feel that a contribution by a project such as GCEP could have the most impact?
More Questions

• Where are major inefficiencies and losses in the power system (not including generation or end-use)?

• Assuming 50% penetration of renewables into the grid and no storage, what does the power system need to look like, and how would it operate?

• In a carbon-constrained world, how could the power system change to accommodate the demand for transportation?

• What would be game-changing scenarios for the electric grid?
Workshop Agenda
Day 1

Welcome and Introduction
8:30 GCEP Introduction and Workshop Purpose Lynn Orr
9:00 Power System Introduction and Overview Thomas Overbye
9:40 California Grid Operations Jim Detmers
10:20 Break
11:35 Industry Perspectives Juan de Bedout

Advanced Transmission
11:15 High-Temperature Superconducting Transmission Michael Gouge
11:55 Lunch
12:55 Power Quality Requirements for Reliability Surya Santoso
1:35 Quantum Wires for Grid Applications Matteo Pasquali

Power Systems, Control and Analysis
2:15 Distributed Solutions for Grid Control Deepak Divan
2:55 Break
3:10 Integration Technologies for Power Flow Controllers Khai Ngo
3:50 Enhanced State Estimation Ali Abur
4:30 Computational Issues for Intelligent Grids Bruce Wollenberg

5:10 Reception
Workshop Agenda
Day 2

Opening
8:30 Visions for the Utility of the Future
 David Mohler

Distributed Generation
9:10 Perspectives on Vehicles to Grid
 Michael Kintner-Meyer
9:50 Impacts and Needs for Renewables in DG Integration
 Giri Venkataramanan
10:30 Break
10:50 Distributed Generation Expansion
 Kevin Tomsovic
10:50 Voltage Control with Distributed Generators
 Fangxing (Fran) Li
12:05 Lunch

Storage for Distributed Resources
1:05 Energy Storage: A Distributed Resource
 Imre Gyuk
1:45 Battery Materials for Grid Applications
 Glenn Amatucci
2:25 Kinetic Energy Storage and Power Generation
 Robert Hebner
3:05 Closing Remarks

3:10 Speaker Roundtable Discussion
Thank You!

GCEP Staff and Emilie Hung
- for the technical organization of the workshop

Nancy Sandoval
- for organizing everything else

Our Sponsors
- for making this project possible

Our Speakers
- for sharing your time, expertise, and opinions with us

The Energy Community
- for taking time to participate in our discussions