Commercial Wind Turbines

- **Power**
 - ~1-3 Megawatts

- **Rotor**
 - ~55-90 meters diameter

- **Nacelle**
 - 65-85,000 pounds
 - 100-150,000 pounds

- **Tower**
 - 60-80 meters
 - 160-300,000 pounds
Mechanical Systems
Power Electrical Systems

Cage-rotor induction machine
- Constant speed

Wound-rotor induction machine
- Variable speed
- Partial-power conversion

Synchronous machine
- Variable speed
- Full-power conversion
Design Environment

- Variable/uncontrollable wind environment
- Temperature extremes
- Precipitation and humidity
- Lightning
- Highly vibratory
- Poor accessibility
- 5-6,000 hours per year for 20+ years
Cost of Energy (COE)
Typical Cost Distribution - 1.5 MW Turbines

![Pie chart showing cost distribution]

\[COE = \frac{FCR \cdot ICC + LRC + O & M}{AEP} \]

- FCR = fixed charge rate (1/yr)
- ICC = initial capital cost ($)
- LRC = levelized replacement cost ($/yr)
- AEP = annual energy production (kWh/yr)
- O&M = annual ops and maintenance ($/yr)
Key Messages

• Large-scale complex equipment
• Adverse conditions
• Uncertain loads
• Cost of energy is critical
 – Initial cost
 – Energy production
 – O&M
 – Risk
Mechanical Challenges

• Reducing initial cost
 – Integrated topologies
 – Advanced materials

• Understanding premature failures
 – Rolling-element bearings
 – Gear micro-pitting

• Reducing O&M costs
 – Condition monitoring
 – Facilitating component replacement
 – Improving reliability and predictability
Power Electrical Challenges

• Reducing initial cost
 – Switching technologies

• Improving low wind speed energy capture
 – Efficient low-speed/power operation

• Improving reliability
 – Environmental robustness

• Grid interconnection concerns
 – VAR support and power quality
 – Fault tolerance (ride-through)
Solutions Under Investigation

Baseline

Direct Drive

Multi-Gen

Single Stage
Opportunities – Mechanical System

• Understanding loads
 – Turbine motion influences
 – Drive line ‘double-ended’ torsion
 – Internal gear and bearing dynamics
 – Understanding inflow and its interaction with system

• Tribology and wear
 – Understanding gear wear mechanism
 – Effect of dynamic loads on lubricant film

• Refining design methodologies
 – Verifiable and transparent bearing/gear rating methods

• Reducing Loads
 – Higher speeds
 – Controls
Opportunities – Reducing O&M

• Condition monitoring
 – Defining run/replace alarm levels
• Reduce replacement costs
 – Innovative modular designs
• Reduce skill levels
 – Self-diagnostics and remote monitoring
• Improve reliability
 – Eliminate premature failures
Opportunities – Power/Electrical

• Increase generator efficiencies
 – Permanent-magnet/synchronous machines

• Improve power electronic efficiencies
 – Higher voltage systems
 – Alternative switching topologies

• Increase speed range
 – More power with same torque

• Lower power electronic costs
 – Especially for high-power drives
Conclusions

- Many opportunities in multiple disciplines
- Active programs in many areas but heavily limited resources
- Industry has near- and long-term needs
- Collaboration and coordination welcome and could have high impact