Advanced CO$_2$/H$_2$ Separation Materials
Incorporating Active Functional Agents

Shingo Kazama
Research Institute of Innovative Technology for the Earth (RITE)
Outline

1. Membrane Challenge for Cost Reduction in CCS
2. CO₂ Molecular Gate Function for CO₂ Separation Membrane
3. Dendrimers for Promising Molecular Gate Materials
4. Dendrimer Hybrid Membranes
5. Next Generation of CO₂ Molecular Gate in GCEP Research
6. Concluding Remarks
CO₂ Capture Methods for CCS

1. CO₂ Sources

- Fossil Fuel
- Bio-Mass

Power plant (Combustion)

Blast-furnace

Gasification

2. CO₂ Capture (Chemical Research Group in RITE)

Absorption

- CO₂ < 2%
- CO₂ > 99%

Absorber

Regenerator

Absorbent

Novel process

Waste heat utilization

Membrane

- CO₂ > 95%

CO₂ < 2%

Polymer

Zeolite

Carbon

Nono composite material

Adsorption

- CO₂ < 2%

CO₂ > 97%

Zeolite,

Mesoporous silica

Plant analysis for the decreasing energy and cost

3. Storage (CO₂ Storage Group in RITE)

- Geological
- Utilization
- Ocean
Present Cost of CCS (coal fired power plant)

- Recovery amount: 1 Mt-CO$_2$/yr, distance: 20 km, pressure: 7 MPa
- Injection method: ERD, injection amount: 0.1 Mt-CO$_2$/yr/well

Power loss for extraction steam from low pressure turbine: 0.05 kWh/MJ

- New plant
 - Coal fired plant to aquifer

- Existing plant
 - Existing coal fired plant to aquifer
 - Upgrading desulfurization facilities & Auxiliary coal fired boiler

Avoided cost JPY/t-CO$_2$

NET storage = 670/1000

Capture cost 4,200 JPY/t-CO$_2$

CCS total cost 7,300 JPY/t-CO$_2$
Membrane Performance and CO₂ Capture Cost

IGCC with WGS (CO₂ conc. 40%):
- CO₂ Permeance: 7.5×10^{-10} m³/(m² s Pa)
- CO₂/H₂ Selectivity: 30
- Cost: 1,500 JPY/t-CO₂
- Cost: 1,000 JPY/t-CO₂

Ref: MDEA: 2,500-3,000 JPY/t-CO₂

Natural Gas (CO₂ conc. 50%):
- CO₂ Permeance: 7.5×10^{-10} m³/(m² s Pa)
- CO₂/CH₄ Selectivity: 40
- Cost: <1,000 JPY/t-CO₂
- 1/5 of MDEA method

Basic Membrane Performance:
- Permeance & Selectivity
What ideal membrane?

A wet towel balloon may hint an ideal gas separation membrane.
Basic Concept of CO₂ Molecular Gate for CO₂/H₂ Separation

CO₂ : 0.33 nm
H₂ : 0.29 nm

Feed
High Pressure Difference
Low Permeate

Membrane Material

Excellent CO₂ selectivity

Polyamidoamine (PAMAM) dendrimer (0-OH-PAMAM dendrimer)
H₂ Blockage by CO₂ in Dendrimer

- **H₂ Permeability**
 - Pure gas > Mixed-gas
 - (CO₂: 5 %)

- **CO₂ blocks H₂ permeation**

- **Graph**
 - RH [%] in Feed Gas vs. H₂ Permeability [Nm³ m⁻² s⁻¹ Pa⁻¹]
 - Pure H₂
 - Mixed-gas (H₂/CO₂=95%/5%)

- **4-OH PAMAM dendrimer**
Possible Model of H₂ Permeation Blockage

Carbamate Formation
Pseudo-cross-linkage
H₂ permeation blockage

Concentration of Carbamate & Bi-carbonate in 4-OH Dendrimer at 80 RH%

<table>
<thead>
<tr>
<th></th>
<th>(mol/mol-dendrimer)</th>
<th>2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbamate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi-carbonate</td>
<td></td>
<td>0.36</td>
</tr>
</tbody>
</table>

CO₂
H₂
Dendrimer Hybrid Membrane for CO$_2$ Capture from Pressurized Gas Stream

```
H$_2$N-\(\text{NH}_2\)
\text{H}_2\text{N-\(\text{O}\)O-\(\text{NH}\)NH}_2\)
\text{H}_2\text{N-\(\text{O}\)O-\(\text{NH}\)NH}_2\)
O-OH-PAMAM dendrimer
+ PEGDMA
+ TMPTMA
```

UV Curing
CO₂/H₂ Separation Properties of Dendrimer Hybrid Membrane at Elevated Pressure

PAMAM/PEGDMA/TMPTMA = 50/37.5/12.5, Feed : 100 mL/min, Sweep: 20 ml/min, T = 313 K, R.H. = 80%
CO$_2$/H$_2$ Separation Properties of Various Dendrimer Hybrid Membranes

CO$_2$ Permeance $/ m^3$(STP)/(m2 s Pa)

CO$_2$/H$_2$ Selectivity (-)

Film Thickness: 500 µm

Target value for 1,500 JPY/t-CO$_2$

CO$_2$ permeance: $7.5 \times 10^{-10} m^3/(m^2 s Pa)$

CO$_2$/H$_2$ Selectivity: 30

CO$_2$ partial press.: 6 bar

Temperature: 313 K

Now fabricating dendrimer membrane modules with membrane module makers under METI funding
CO₂/CH₄ Separation Properties of Dendrimer Hybrid Membrane

Gas permeance / Nm³/(m² s Pa)

CO₂

CH₄

CO₂ Partial Pressure / kPa

QCO₂ QCH₄

CO₂/CH₄ Selectivity: 58
GCEP Challenge in Molecular Gate Membrane

Present Situation:
High CO$_2$/H$_2$ selectivity
 at large CO$_2$ partial pressure
 at high water vapor content, e.g. 80 RH% or more
 - weak point for dry condition!

GCEP Challenge:
- Higher Permeance and Selectivity
- Well working at lower water vapor
CO₂ Transportation Model of Current Dendrimer Hybrid Membrane

Gas Feed

Hopping CO₂

2 R-NH₂
CO₂
H₂O R-NH₂
HCO₃⁻

Hopping CO₂

CO₂
HCO₃⁻

H₂O

Sorption

Diffusion

Desorption

Permeate

CO₂
H₂O
Sc-CO₂ Structure Directing Method for Next Generation Membrane

Basic Concept:

Pre-formed Solid Membrane

Inject Sc-CO₂

Remove Sc-CO₂

Amino moiety

CO₂

carbamate formation

CO₂ Hopping Channel
Diagram of Set-up for Sc-CO$_2$ Structure Directing Method

- Syringe pump
- Pre-formed membrane
- Sapphire window
- Camera
- High-pressure view cell
- Back-pressure regulator
- Membrane under Sc-CO$_2$
 - Pressure: 10 MPa
 - Temperature: 20-60°C
Effect of Sc-CO$_2$ Treatment (1)

CO$_2$/H$_2$ separation performance

<table>
<thead>
<tr>
<th></th>
<th>Pre-:</th>
<th>Post-:</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCO$_2$ Permeance</td>
<td>4.4×10^{-12}</td>
<td>8.5×10^{-12}</td>
</tr>
<tr>
<td>CO$_2$/H$_2$ Selectivity</td>
<td>140</td>
<td>210</td>
</tr>
</tbody>
</table>

SC-CO$_2$ treatment condition: 10 MPa, 4 hr, 333 K
Effect of Sc-CO₂ Treatment (2)

\[Q (m^3 \text{(STP)}/(m^2 \text{s Pa})) \]

Poly ethylene imine (PEI)

sc-CO₂ treatment time (h)

sc-CO₂ treatment: Temp. 50 °C, Press. 10 MPa

Gas Perm. Test(DPCO₂ = 100 kPa, 90%RH, 40°C)
Membrane application for CO$_2$ capture from a pressurized gas stream, e.g. IGCC, Natural gas, is promising way of reducing CO$_2$ capture cost and energy.
- Molecular Gate Membrane (MGM) is proposed for high CO$_2$ selectivity over H$_2$.
- Dendrimer membrane has good CO$_2$ separation performance over a wide range of CO$_2$ partial pressure and at highly water vapor condition.
- Next generation MGMs that work well in a wide range of humidity in a feed gas and have excellent selectivity and permeance are now under development in GCEP project.
Acknowledgements

Researchers:
Dr. Yuichi Fujioka, Dr. Katsunori Yogo
Dr. Shuhong Duan, Dr. Teruhiko Kai, Dr. Kazuya Goto,
Dr. Ryo Nagumo, Dr. Ryosuke Shimizu, Dr. Hiroshi Machida
Dr. Ikuo Taniguchi, Dr. Kouta Yamazaki

Student of NAIST (Nara Institute of Science and Technology):
Mr. Tomoyuki Kato, Mr. Akihito Itoyama

This study is supported by
-GCEP, Stanford University
-Ministry of Economy, Trade and Industry (METI), Japan.
-Nippon Steel Engineering Co., Ltd.
2. Venue : Kyoto International Conference Center, Japan
3. Organizers : RITE & IEAGHG
 Themes are: Capture; Geo Storage; Other Storage; Industrial sources; Transport; Negative CO2; CO2 utilisation options;
 Demonstration; Tech Assess & Integration; Commercial Issues; Public Perception; Policies; Legal & Regulatory;
 Education, training, and capacity building
5. On-line Conference Registration
 Early Bird open: April 23rd, 2012 / Late on-line registration: July 24th – November 17th, 2012
6. Programme Overview
 (Subject to change)
AM				
AM	AM	AM	AM	
AM	AM	AM	AM	
AM	AM	AM	AM	
AM	AM	AM	AM	
AM	AM	AM	AM	
PM	PM	PM	PM	
PM	PM	PM	PM	
PM	PM	PM	PM	
PM	PM	PM	PM	
PM	PM	PM	PM	
Night	Night	Night	Night	
Night	Night	Night	Night	
Night	Night	Night	Night	
Night	Night	Night	Night	
Night	Night	Night	Night	
Night	Night	Night	Night	
7. Website http://www.ghgt.info/ !!! Sponsors are now being sought !!!
Thank you for your attention!

Research Institute of Innovative Technology for the Earth

Contact: kazama@rite.or.jp