Synthesis of Biofuels on Biocathodes

Alfred M. Spormann
Departments of Chemical Engineering, and of Civil & Environmental Engineering
Stanford University
Current bioenergy efforts on nontraditional biomass

Source: The National Academies
http://needtoknow.nas.edu/energy/interactive/energy-system.php

Alfred M. Spormann, Stanford: Synthesis of Biofuels on Biocathodes
Microbial electrosynthesis

Source: The National Academies
http://needtoknow.nas.edu/energy/interactive/energy-system.php

Alfred M. Spormann, Stanford: *Synthesis of Biofuels on Biocathodes*
Synthesis of CO$_2$-neutral Electrofuels

Solar
Wind
Nuclear

H$_2$O, waste

e^-

CO$_2$
(atmospheric)

Microbial Cathodic Biofuel Reactors

CO$_2$-neutral Transportation fuels
Commodity/Fine Chemicals

Usage
Energetics of Bio-Electrochemical Systems

Microbial fuel cell

![Diagram of a microbial fuel cell with reactions and energy production](image)

- Anode: \(\text{CH}_2\text{O} \) to \(\text{CO}_2 \)
- Cathode: \(\frac{1}{2} \text{O}_2 \) to \(\text{H}_2\text{O} \)

Redox potentials:
- \(\Delta G < 0 \) (useful)
- \(\Delta G > 0 \)

Energy production

Alfred M. Spormann, Stanford: Synthesis of Biofuels on Biocathodes
Energetics of Bio-Electrochemical Systems

Microbial fuel cell

\[
<\text{CH}_2\text{O}> \xrightarrow{\Delta G<0, \text{(useful)}} \text{CO}_2 \\
\text{Anode} \xrightarrow{e^-} \text{Cathode} \\
\frac{1}{2} \text{O}_2 \xrightarrow{\Delta G<0} \text{H}_2\text{O}
\]

Energy production

Microbial electrosynthesis

\[
<\text{CH}_2\text{O}> \xrightarrow{\Delta G>0} \text{CO}_2 \\
\text{Cathode} \xrightarrow{e^-} \text{Anode A} \\
\text{H}_2\text{O} \xrightarrow{\Delta G>0, \text{(solar, renewable, nuclear)}} \frac{1}{2} \text{O}_2
\]

Energy consumption

Alfred M. Spormann, Stanford: *Synthesis of Biofuels on Biocathodes*
Exoelectrogenic Bacteria

Actinobacillus succinogenes

-325mV (vs SHE)

Sporomusa ovata

-400mV (vs SHE)

Methanobacterium palustre

- 700mV
- 900mV (vs SHE)

Coulombic Efficiency:

- Sporomusa ovata: 85% (Nevin et al. 2010)
- Methanobacterium palustre: 80-96% (Cheng et al. 2010, Vilano et al. 2010)

Alfred M. Spormann, Stanford: *Synthesis of Biofuels on Biocathodes*
Research Focus in Microbial Electrosynthesis

- Uptake of cathodic electrons and integration into cellular metabolism
- CO₂ reduction and designer fuels/chemicals pathways
- Engineering stable microbial communities
- Delivery and activation of electrons to cathode
Our research platform

Methanogenic archaea
- Cathode
- CO₂
- Methane

Homoacetogenic bacteria
- Cathode
- CO₂
- Acetate

Shewanella oneidensis
- Cathode
- Med_{ox}
- Med_{red}
- Fumarate (Surrogate)
- Succinate
- -500mV (vs SHE)

Escherichia coli
- Cathode
- Med_{ox}
- Med_{red}
- Fumarate (Surrogate)
- Succinate
- -600mV (vs SHE)

Alfred M. Spormann, Stanford: *Synthesis of Biofuels on Biocathodes*
Mediator-controlled cathodic electron consumption by *S. oneidensis* MR1

Expected stoichiometry:
\[\text{Fumarate} + 2e^- + 2H^+ \rightarrow \text{Succinate} \]
Electrode attached biofilm of *S. oneidensis* MR1

Current consumption coupled to fumarate reduction

Graph:
- **Y-axis:** Current [mA]
- **X-axis:** Time [h]
- **Key Points:**
 - **Fumarate addition:** -360 mV vs. SHE
 - **Discontinued for CV measurement:**
Electrode attached biofilm of *S. oneidensis* MR1

Current consumption coupled to fumarate reduction

Expected stoichiometry: \(\text{Fumarate} + 2e^- + 2H^+ \rightarrow \text{Succinate} \)

-360 mV vs. SHE

![Graph showing succinate recovered and electrons consumed](image-url)
Electrode attached biofilm of *S. oneidensis* MR1

Cyclic voltammetry of abiotic and biofilm electrode with fumarate
Mediator-controlled cathodic electron consumption by *E. coli* using fumarate

Alfred M. Spormann, Stanford: Synthesis of Biofuels on Biocathodes
Synthesis of CO$_2$-neutral Electrofuels

- Solar
- Wind
- Nuclear

H$_2$O, waste \rightarrow e$^-$ \rightarrow Microbial Cathodic Biofuel Reactors \rightarrow CO$_2$ (atmospheric) \rightarrow Usage

CO$_2$-neutral Transportation fuels
Commodity/Fine Chemicals
Spormann bioelectrofuels team

Liliana de la Paz
Ann Lesnefsky
Svenja Lohner
Holly Sewell
Anne-Kristin Kaster
Blaise Pinaud
Jamarillo lab

Dr. Yi Cui
Stanford

Funding: GCEP

Dr. Bruce Logan
Penn State
Power densities reported on MFCs
(normalized to electrode-projected surface)

Logan 2009
Shewanella oneidensis MR-1 (AS84)
Cell suspension, 0, 0.1, 0.5 mM MV (prereduced)

Current [mA] vs. Time [h]

0 mM MV
0.05/0.1 mM MV
0.1 mM MV
0.5 mM MV

Alfred M. Spormann, Stanford: Synthesis of Biofuels on Biocathodes
Exoelectrogenic Bacteria

Sporomusa ovata

Coulombic Efficiency: 85%
(Nevin et al. 2010)

Geobacter sulfurreducens

Coulombic Efficiency: 65%
(Dumas et al. 2010)

Methanobacterium palustre

Coulombic Efficiency: 80-96%
(Cheng et al. 2010)
(Vilano et al. 2010)
Expected Data

Addition of e⁻-acceptor

Current

Time

Concentration

Reactant, Product

Alfred M. Spormann, Stanford: Synthesis of Biofuels on Biocathodes
Escherichia coli: $e^- + \text{fumarate}$
Shewanella oneidensis – Electron Balance

- **Electrons [mmol]**
 - 0.5
 - 0.4
 - 0.3
 - 0.2
 - 0.1
 - 0.0

- **Time [h]**
 - 0
 - 2
 - 4
 - 6

- e\(^{-}\) consumed by fumarate reduction
- Cathodic e\(^{-}\) consumed
Future Work - Outlook

• Identify molecular mechanism of electron transport into the cell
• Optimize shuttle mediated electron transport
• Explore other mediators & cathode potentials
• Work with other (engineered) target microorganisms
• Construct microbial communities, interspecies electron transfer
• Scale up
Bio-Electrochemical Systems

Microbial Fuel Cell

- Microbially catalyzed
- Chemically catalyzed

Anode

- CO₂
- Organics

Energy production

Cathode

- O₂
- H₂O
- H⁺
- H₂

Microbial Electrosynthesis

- Chemically catalyzed
- Microbially catalyzed

Cathode

- Product
- Electron acceptor
- CO₂

Energy consumption

adapted from Rabaey & Rozendal, 2010
Mediators/Electron shuttles

Methyl Viologen

\[\text{H}_3\text{C}-\text{N}^+\text{N}^+-\text{CH}_3 \]

Redox potential: -440mV

Oxidized: Transparent

Reduced: Blue

Neutral Red

\[\text{N} \]

Redox potential: -330mV

Oxidized: Red

Reduced: Transparent
Alfred M. Spormann, Stanford: Synthesis of Biofuels on Biocathodes
Shewanella oneidensis – Electron Balance

- **Electrons [mmol]**
 - 0.4
 - 0.8
 - 1.2
 - 1.6

- **Time [h]**
 - 0
 - 5
 - 10
 - 15
 - 20
 - 25

- **e⁻ consumed by fumarate reduction**
- **Cathodic e⁻ consumed**
Methanothermobacter marburgensis measured results

Alfred M. Spormann, Stanford: Synthesis of Biofuels on Biocathodes
Shewanella oneidensis MR-1 WT (AS579)

Cell suspension, 0.5 mM MV (added last)

Pregrown on 50mM lactate, 70mM + CAA fumarate anaerobically for app. 18h, OD: app. 0.8, -700mV vs Ag/AgCl
Candidate Microorganisms for Microbial Electrosynthesis

Homoacetogens
- CO₂
- H₃C — COO⁻ (Acetate)
- alkane precursor

Engineered microorganisms
- Butanol
- Isobutanol
- Isoprenes

Methanogens
- CO₂
- CH₄ (Methane)

Construct microorganisms communities
- Biofuels
- Intermediate Products

Alfred M. Spormann, Stanford: *Synthesis of Biofuels on Biocathodes*
Exoelectrogenic Bacteria

Sporomusa ovata

-400 mV (vs SHE)

- Acetate
- CO₂

Coulombic Efficiency: 85%
(Nevin et al. 2010)

Shewanella oneidensis

-500 mV (vs SHE)

- Medox
- Medred
- Fumarate (Surrogate)
- Succinate

Spormann lab

Escherichia coli

-600 mV (vs SHE)

- Medox
- Medred
- Fumarate (Surrogate)
- Succinate

Spormann lab

Alfred M. Spormann, Stanford: *Synthesis of Biofuels on Biocathodes*