Adaptive Multiscale Method for Nonlinear Flow and Transport in Porous Media

Hui Zhou Hamdi Tchelepi
Department of Energy Resources Engineering, Stanford University

Introduction

Scale difficulty in modeling underground CO₂ sequestration
- Highly heterogeneous underground porous media requires fine-scale description (e.g., 10^6 $-$ 10^8 cells)
- Fine-scale geophysical model requires large-scale computational system (very difficult and slow to solve)

Multiscale methods promising to resolve this scale issue
- Solve global system in coarse scale
- Reconstruct fine-scale information locally
- Coarse-scale global solver and fine-scale local solver are intertwined to improve quality of both solvers

Governing Equations

Mass balance equations for black-oil model:

$$\frac{\partial (\phi b_i s_i)}{\partial t} + \nabla \cdot (b_i u_i) = q_i, \quad u_i = -\lambda_i \nabla p_i, \quad \lambda_i = \frac{kk_{li}}{\mu}, \quad \sum u_i$$

Sequential implicit time discretization (linearized form):

$$\frac{C^{p+1} - p^0}{\Delta t} - \sum_{i} \alpha_i^n \nabla \cdot (b_i^n \lambda_i^n \nabla p^{p+1}) = R_i \quad \phi_i^{p+1} b_i^{p+1} s_i^{p+1} - \phi_i^n b_i^n s_i^n = \nabla \cdot \left(b_i^{p+1} u_i^{p+1} \right) - q_i,$$

ϕ_i^{p+1}: Multiscale Restriction Operator

$$R_{K,m} = \begin{cases} 1 & \text{if } \Omega_m \subset \Omega_K \\ 0 & \text{otherwise} \end{cases} \quad (K = 1, \ldots, N_k; m = 1, \ldots, N_l).$$

Finite-volume type restriction operator

Finite-element type restriction operator

Assemble prolongation operator from local basis functions

ϕ_i^A:

$$\Phi_K = \sum_{\Omega_m \supset \text{supp}(\phi_i^A)} \phi_i^A$$

$\mathcal{P}_{m,K} = \Phi_K(x_m)$

\mathcal{R}:

\mathcal{P}:

Solution Strategies for Transport Equation

Update total velocity
- Full construction: solve Neumann problems locally
- Approximate updating: Location weighted linear interpolation

Update fine-scale saturation
- Full construction: solve original transport equations
- Approximate updating: History weighted linear interpolation

Numerical Examples

Homogeneous case: Error and Adaptivity

ε_p	2.09e-5
ε_k	5.05e-5
basis(%)	3.66
velocity(%)	10.67
transport(%)	15.22

SPE 10 top layer: Error and Adaptivity

ε_p	7.23e-5
ε_k	3.55e-5
basis(%)	3.76
velocity(%)	4.20
transport(%)	15.55

Summary

- Developed a general algebraic multiscale framework that can incorporate different physics for multiscale computation easily.
- Proposed an adaptive multiscale formulation that is accurate, efficient and robust for general blackoil problems.
- The adaptive multiscale method will be very promising to model large-scale CO₂ sequestration problem.

October 1-3, 2008 GCEP Research Symposium {huizhou, tchelepi}@stanford.edu