Effect of Small Scale Heterogeneity on Multiphase Flow of CO₂ and Brine

Chia-Wei Kuo, Jean-Christophe Perrin and Sally Benson
Department of Energy Resources Engineering, Stanford University

Motivation

The goal of the Sequestration Lab is to develop ability to predict spatial and temporal distribution of CO₂ saturation and trapping through an improved understanding of the pore and core scale physics over the life cycle of a sequestration project.

Focus of this work

Model behavior of brine displacement by injected CO₂ in a series of core-scale laboratory experiments.

Gain better understanding of the influence of sub-core scale heterogeneity on CO₂ storage.

Numerical Simulation: Core Description

Tough2 MP with EC02N module

- Used for numerical simulation
- Designed for large-scale simulations
- Robust treatment of thermodynamic and thermophysical properties of CO₂, H₂O and NaCl

Rock Properties: Porosity Map

Berea Sandstone
29 lateral images data
Mean Φ=0.203/ Mean k=430 mD
Bedding at a high dip angle

Experimental Results: Saturation Maps

- Large part of the core poorly filled with CO₂ even at injection of 100% CO₂
- Want to explain bypass of bottom part of the core near the outlet

Simulation Input : Relative Permeability Curves

The relative permeability relation used in the simulation was the following:

\[
k_{r, CO_2} = \left(1-S_{cr, CO_2}\right)^{n_{CO_2}} S_C^{1-S_{cr, CO_2}}
\]

\[
k_{r, brine} = \frac{S_{cr, brine} - S}{1-S}
\]

These power-law functions are used to fit the measured relative permeability data for brine and CO₂ and are used as inputs to the TOUGH2 model.

The four free parameters (Swr, Swrn, nco2, and nw) are determined by the optimization.

Simulation Input : Capillary Pressure Curves

- Obtained based on known porosity and permeability data
- Each grid element has a unique pair of porosity and permeability values; hence a unique capillary pressure curve

Simulation Input : Permeability-Porosity Models

A number of different porosity-permeability correlation models were tested in order to match the spatial distribution of CO₂ in the experiments. Three models are used to compare the experiments.

Simulation Results and Discussion

Compare Experiment and Simulation at 1.2ml/min

- The match of the saturation and the pressure drop has been improved a lot
- The middle points such as 34%, 51%, 61%, and 79% are close to the data
- The two end points such as 26% and 100% are off a lot

Experimental Results: Saturation Maps

- Measured CO₂ saturation patterns can be qualitatively replicated using simulation models
- Can reproduce absence of CO₂ in lower portion of outlet end of the core

Compare Porosity Map to CO₂ Saturation Map

- Similar structural features
- Strong correlation close to the inlet end
- High porosity regions -- high CO₂ saturations
- Low porosity layers act as capillary barriers, resulting in bypass of portions of the core

Conclusion

- Spatially varying porosity, permeability and capillary pressure curves are used in the simulations, and CO₂ distribution is controlled by varied capillary pressure curves
- Match CO₂ saturation magnitude and pressure drop quite good
- Measured CO₂ saturation patterns can be qualitatively replicated
- Low φ --> low k --> high capillary entry pressure --> low CO₂ saturation
- Higher degree contrast in rock properties --> greater contrast in saturation
- Higher degree heterogeneity in the core --> lower average saturation

Future Work

1. Improve simulations to replicate experiment qualitatively and quantitatively
2. Investigate all the possible factors that may affect CO₂ saturation, such as flow rate effect, gravity effect and length effect
3. Identify and minimize numerical artifacts by different grid size and time step size

Acknowledgement

This project is supported by Global Climate and Energy Project at Stanford University

Contact Information: chiaweik@stanford.edu