Investigators
Hongjie Dai, Professor, Chemistry;
Ming Gong, Graduate Researcher, Chemistry

Abstract
High-performance, low-cost and environmentally friendly batteries are important to portable electronics, stationary grid storage and electric vehicles. Since starting this project, we explored the synthesis of β-phase Ni(OH)_2 and Al, Co-codoped α-phase Ni(OH)_2 (NiAlCo) nanoplates covalently attached onto oxidized few-walled carbon nanotubes (β-Ni(OH)_2/CNT and NiAlCo/CNT). These hybrid materials were investigated as the cathode material of rechargeable Ni/Zn batteries. They exhibited high specific capacity of ~220 and ~350 mAh/g for β-Ni(OH)_2/CNT and NiAlCo/CNT respectively, and long cycling stability with < 20 % capacity loss after 1,000 charge-discharge cycles. Due to delayed start of the project, we will request an extension to use the synthesized materials to develop fully rechargeable Ni/Zn batteries with an ultrahigh power density and fastest charging and discharging time in seconds.

Background
Battery technologies provide a solution to the storage of intermittent renewable energy, playing important roles in decreasing our dependence on fossil fuels\(^1\). Li-ion batteries are taking the leading role currently\(^1\)-\(^3\). They have high energy density, but suffer from insufficient power density, their high cost and flammable nature\(^1\)-\(^3\). On the other hand, traditional aqueous batteries are often cost effective and relatively safe, but are limited in energy density\(^3\)-\(^4\). Nickel/zinc (Ni/Zn) batteries are one type of alkaline rechargeable with an open circuit voltage of ~1.7 V and a high theoretical energy density of 372 Wh/kg\(^3\)-\(^4\). They have higher working voltage than other alkaline systems (e.g. Ni/Cd or Ni/MH). Considering their lower cost and non-flammable nature, Ni/Zn batteries are one promising candidate to power future electric vehicles. However, practical Ni/Zn batteries have limited performance with energy density of 55–85 Wh/kg and power density of ~0.2 kW/kg, constrained by available battery electrode materials up to now, for both Ni and Zn sides\(^3\)-\(^5\).

Results thus far
a. Successful preparation of α- or β-phase Ni(OH)_2 nanoplates on carbon nanotubes (CNTs)

We developed a multi-step solution method to synthesize α- or β-phase Ni(OH)_2 nanoplates on few-walled CNTs. The method enlists controlled hydrolysis of metal salts at a low temperature (~80°C) in a DMF/H\(_2\)O mixed solvent, followed by solvothermal treatment at a higher temperature (~120-150°C) to afford the desired phase and crystallinity of metal hydroxide and the simultaneous reduction of oxidized carbon nanotubes. Introduction of a small fraction of Al and Co precursors (~20 at% in total) induced the formation of layered double hydroxide (LDH), which has an equivalent structure to α-phase Ni(OH)_2.

Transmission electron microscopy (TEM) images in Figure 1b-c show that the typical β-Ni(OH)_2/CNT and NiAlCo/CNT we obtained. The resulting β-Ni(OH)_2/CNT hybrid contain ~100 nm β-Ni(OH)_2 nanoplates with irregular shapes interconnected by CNTs, while co-doping of trivalent Al and Co cations not only converts the chemical structure, but also transforms the
final hydroxide product to much smaller oval-shaped thin nanoplates (~15 nm in width and ~2 nm in thickness). X-ray diffraction (XRD) (Figure 1d) confirm the formation of brucite \(\beta \)-Ni(OH)\(_2\) (black) and LDH with large interlayer spacing of 0.71 nm (red).

Figure 1: Rechargeable Ni/Zn batteries based on inorganic-CNT hybrid electrode materials. (a) A schematic showing the battery configuration, (b) SEM image of \(\beta \)-Ni(OH)\(_2\)/CNT, (c) SEM image of NiAlCo/CNT, (d) XRD of \(\beta \)-Ni(OH)\(_2\)/CNT and NiAlCo/CNT, (e) dependence of specific capacity on discharge current density for NiAlCo/CNT tested in a three electrode system.

b. Detailed electrochemical assessment of Ni(OH)\(_2\)/CNT hybrid materials in alkaline solutions

We investigated the electrochemical properties of both hybrid Ni electrode materials through cyclic voltammetry (CV) and galvanostatic charge-discharge measurements using a standard three electrode system in 1 M KOH. All the CV curves exhibited a pair of redox peaks in the voltage range of 0 - 0.6 V (vs. Ag/AgCl electrode), corresponding to the active redox conversion between \(\text{Ni}^{II} \) and \(\text{Ni}^{III/IV} \) in this potential range. When assessed under galvanostatic charge-discharge measurements, they exhibited high specific capacity of ~220 and ~350 mAh/g for \(\beta \)-Ni(OH)\(_2\)/CNT and NiAlCo/CNT respectively at 5 mA/cm\(^2\) (based on the mass of active materials, Figure 1e), among the highest capacities of all Ni-based electrode materials reported to date. Both electrode materials demonstrated high cycling stability with <30 % capacity loss after 2,000 charge-discharge cycles at 50 mA/cm\(^2\). Our next step is to maximize the loading of the Ni materials for electrode construction, and pair it with a Zn electrode for full battery demonstration.
Conclusions
In this investigation, we prepared β-Ni(OH)$_2$/CNT and NiAlCo/CNT as novel electrode materials for rechargeable Ni/Zn batteries. They exhibited large specific capacity and good cycling stability. As a next step, full Ni/Zn batteries will be made with these hybrid materials to demonstrate high energy density and ultrahigh power density Ni/Zn cells.

Publications and Patents

References
6 http://climate.dot.gov/about/overview/greenhouse-gases.html.

Contacts
Hongjie Dai: hdai1@stanford.edu
Ming Gong: gongm@stanford.edu
Yanguang Li: yanguang@stanford.edu