Introduction to Solar Energy Conversion

Solar energy represents the largest energy input into the terrestrial system. Despite its relatively low power density, this resource could potentially satisfy the global energy demand on its own. The challenges that need to be addressed to make solar energy viable and competitive on a large scale include: enhancing the performance of solar energy conversion systems through increased efficiency and use of durable materials; reducing the material, fabrication, and installation costs so that these systems can be deployed at a large scale; and overcoming the intermittent nature of the resource to allow supply to meet demand at all times.

Photovoltaic energy conversion efficiency has increased steadily in the past decade through enhanced photon absorption and charge transport. Moreover, continuous development of novel device concepts, materials, and fabrication processes has contributed to lowering the cost of solar power. Thin-film solar cells are regarded as a promising route for low-cost energy conversion. Inorganic thin films are relatively mature technologies with record efficiencies around 20%. Organic solar cells are at an earlier stage of development with efficiencies reaching around 11% for polymeric heterojunctions and dye-sensitized cells. Further research in thin-film technologies is required to increase their efficiency up to the thermodynamic limits, to enhance their stability, and to further reduce their fabrication cost.

Solar thermal technologies are appropriate for large-scale energy production and can be combined with thermal energy storage systems to offer a practical solution to smooth supply intermittency over time periods of several hours.

Photo electrochemical systems are another option under investigation to circumvent the intermittency issue of solar power. They hold the promise to efficiently harvest solar energy and convert it into chemical fuels with a single, potentially low-cost device. This conversion strategy allows for the carbon-free – or even carbon-negative when CO₂ is used as a feedstock – synthesis of fuels for electricity and/or transportation, and provides a solution to the intermittency problems without requiring the use of ancillary energy storage systems to match supply and demand.

Currently, GCEP has four ongoing projects in the solar area that fall across the areas of organic and inorganic thin films, (photo-assisted) thermionic systems, nanoscale light-management and photo electrochemical production of hydrogen.

Professors Brongersma at Stanford University, Polman at AMOLF, and Atwater at CalTech, have a project that began in 2012 on “Dielectric Metasurfaces for Light Trapping in High-efficiency Low-cost Silicon Solar Cells”. In this project, the Brongersma group has demonstrated that flat optical elements can be realized that redirect and trap light as well as concentrate light for concentrated solar photovoltaics. They optimized the size, shape and arrangement of the dielectric scatterers. The aim is to apply these metasurfaces to thin (5-50 μm) single-crystalline silicon solar cells that are made using commercially available lift-off and layer transfer techniques. Numerical
simulations show that it is feasible to realize a dielectric-metasurface-enhanced single-crystalline Si solar cell thinner than 20 μm with an AM1.5 conversion efficiency over 20%. If successful, this will demonstrate a highly efficient silicon solar cell that can be made at low silicon materials cost. As the cost of silicon is a major cost factor in conventional wafer scale Si solar cells (c. 0.25 $/Wp) this project would present a major step forward in Si solar cell technology. The team has recently demonstrated the ability to spectrally split and concentrate light with a single optical component. This is of great value in solar systems that rely on semiconductor cells with different bandgaps to enhance power conversion efficiency. In the next phase of the project they will integrate these elements with high efficiency thin Si solar cells. At Caltech such cells have already been created using metallic finger electrodes. The Si structures will be used to further enhance efficiency by light concentration and spectral splitting. By studying different light trapping designs, the researchers hope to further elucidate the potential and limitations of dielectric metasurfaces for use in high performance light trapping layers. The work led by AMOLF demonstrated that optical and electrical management within high performance cells leads to further efficiency gains. They are working on demonstrating a Si cell with both nanophotonic antireflection and conduction, which would then be fully compatible with ultrathin crystalline cells. They have also started working on metasurfaces embedded within ultrathin cells to further reduce interfacial recombination losses, and couple directly into wave-guided and local modes. The Retro-reflection work is currently being extended from a one-dimensional system to multiple polarizations and orientations. So far this project has led to one provisional patent application on “Dielectric metasurface optical elements,” by Mark L Brongersma, Dianmin Lin, Pengyu Fan, Erez Hasman, and four peer-reviewed publications including one in Science.

Professors William Chueh and Nick Melosh are working on “Maximizing Solar-to-Fuel Conversion Efficiency in Oxide Photo-electrochemical Cells Using Heat and Concentrated Sunlight”. The goal is to substantially increase the solar-to-fuel conversion efficiency in photoelectrochemical cells (PECs) by using heat and intense light from concentrated solar radiation. The team will address these shortcomings by designing earth-abundant, oxide-based heterojunction photoanodes that can operate at temperatures significantly above ambient. These oxide-based PECs aim to capture excess thermal energy resulting from the absorption of intense concentrated sunlight, which is normally discarded. In the first one and half years of this work, substantial progress has been made in demonstrating the strong performance enhancement with temperature and optical concentration in iron oxide and bismuth vanadate photoelectrode in liquid electrolytes. A solid-state electrolysis cell operating between 300 and 600 °C has been developed. This result lays the foundation towards high efficiency solid-state PECs operating beyond room temperature. The results so far indicate that combining thermal enhancement and optical concentration is a promising way to improve the efficiency of photoelectrochemical water splitting. Our future plan is to explore this effect across multiple oxide material systems and implement an all solid-state PEC operating at elevated temperatures. The specific plan includes: fabrication of nanoporous photoelectrodes (based on Fe2O3, BiVO4 and TiO2) with excellent charge separation and transport characteristics atop the ultra-thin YSZ solid electrolyte; development of oxide
heterojunction to improve charge separation at elevated temperature; characterization of the solar-to-hydrogen efficiency and stability between 300 and 600°C.

Professors Mike McGehee and Hemamala Karunadasa have a project entitled, “Novel Inorganic-organic Perovskites for Solution Processable Photovoltaics”. These researchers have already fabricated 4-terminal hybrid tandem solar cells, which comprise of a semi-transparent perovskite solar cell stacked on top of a CIGS or silicon solar cell achieving efficiencies over 18% in the case of the CIGS-perovskite tandem. As the reliability of the perovskite material remains the greatest technical risk in commercialization of perovskite photovoltaics, the team has made several important discoveries regarding instabilities of the perovskite to electrical bias and illumination. In particular, they have found that perovskite solar cells in planar architectures typically exhibit hysteresis with voltage, and a decline in performance under steady-state conditions that can be reversed by forward biasing the device. They have also found that larger bandgap perovskites incorporating mixed halides, such as CH$_3$NH$_3$Pb(I$_{1-x}$Br$_x$)$_3$, generally undergo a halide segregation process under illumination. This produces domains with a smaller bandgap than the starting material and limits the open circuit that can be achieved by these materials. Previously the CH$_3$NH$_3$PbI$_3$ perovskite was shown to be highly sensitive to moisture. The group has developed 2-dimensional perovskite materials incorporating hydrophobic organic cations that have greatly improved the moisture resistance, with no degradation products observed after 46 days of moisture exposure. This year’s technical report highlights these results and a first demonstration of a mechanically stacked, 4-terminal tandem solar cell utilizing a semi-transparent perovskite device as the large bandgap junction. Investigations into understanding the hysteresis and stability of perovskite devices under electrical bias, and the photo-stability of mixed-halide perovskites are also presented as is improved stability to moisture using new layered perovskite materials. Most of the topics presented in this report have been published in peer reviewed journals over the past year that are listed in the Publications and Patents section of the technical report.

Professors Shanhui Fan, Mark Brongersma, and James Harris began a project in 2015 entitled “Solar Thermophotovoltaics: Improving the Efficiencies of Emitters and Narrow Band Gap Photovoltaic Cells”. In solar thermophotovoltaics (STPV) systems, an intermediate element is heated by absorbing solar radiation. The emitted thermal radiation from the intermediary, whose spectrum can be very different from that of sunlight, is then converted into electrical energy by a solar cell. Solar thermophotovoltaics have the potential to overcome the Shockley-Queisser limit with a single junction cell by utilizing nearly the entire solar spectrum. In an STPV system, sunlight is converted into heat through a broadband absorber. The heat is then used to generate narrow-band thermal radiation from an emitter. High theoretical efficiency can be achieved if the emitter generates narrow-band radiation that is well matched in wavelength to the band gap of a single-junction solar cell. The researchers propose to significantly advance the fundamental science in solar TPV, by significantly improving the performance of both thermal emitters and narrow band gap solar cells. They will develop novel high-temperature refractive materials, such as TiN, that exhibit strong plasmonic responses (Brongersma), and combine this with a nanophotonic approach for
emission control (Fan). For the development of low band gap semiconductor solar cells, they will build upon previous experience in demonstrating world record multi-junction cells (Harris). So far they have conducted research in optimizing the emitter design for the high efficiency solar thermophotovoltaic device. This design is very important towards implementation and demonstration of the emitter efficiency, and is also crucial for the final integrated solar thermophotovoltaic system. This team has successfully designed the thermal emitter with a strong emissivity peak at 0.7eV by coupling bulk tungsten to a photonic crystal slab. The emissivity peak aligns well with the band gap of the solar cell, and is also tunable by changing the design parameters.