Maximal photosynthetic efficiency of microalgae in photobioreactors and the minimal requirement for gas transfer

Marcel Janssen and René Wijffels
Bioprocess Engineering Group, Wageningen University
Wetsus, center of excellence on Water Technology
What’s determining PE outdoors?

- Light intensity
- Temperature
- Oxygen partial pressure
- Carbon dioxide partial pressure
- pH
- Nutrients

Low controllability

High controllability
Biomass growth

- Sunlight driven production of carbohydrates:
 \[CO_2 + H_2O \rightarrow CH_2O + O_2 \]
 \[10 \text{ h} \]

- Carbohydrates yield biomass:
 \[1.18 \, CH_2O + 0.12 \, NH_4^+ \rightarrow CH_{1.78}O_{0.36}N_{0.12} + 0.18 \, CO_2 + 0.47 \, H_2O + 0.12 \, H^+ \]

- Taken together:
 \[CO_2 + 0.71 \, H_2O + 0.12 \, NH_4^+ \rightarrow CH_{1.78}O_{0.36}N_{0.12} + 1.18 \, O_2 + 0.12 \, H^+ \]
 \[11.8 \text{ h} \]
Theoretical maximal photosynthetic efficiency (PE)

<table>
<thead>
<tr>
<th>N-source</th>
<th>(QR_{CO2}) mol Cmol(^{-1})</th>
<th>(Y_{x,E}) g mol(^{-1})</th>
<th>(PE_{PAR}) % PAR</th>
<th>(PE) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO(_3^–)</td>
<td>14.2</td>
<td>1.50</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>NH(_4^+)</td>
<td>11.8</td>
<td>1.80</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>No nitrogen*</td>
<td>10</td>
<td>1.96</td>
<td>21</td>
<td>9</td>
</tr>
</tbody>
</table>

* Hypothetical situation of biomass solely accumulating carbohydrates (CH2O)\(_n\)
Light use efficiency in practice

\[r_{ph,abs} = r_{ph,\mu} + r_{ph,m} + r_{ph,heat} \]

\[r_{ph,abs} = \int_{400}^{700} a_\lambda \cdot PFD_\lambda \cdot d\lambda \]

\[r_{ph,\mu} = \frac{1}{QY} \cdot Y_{O2,x} \cdot \mu \]

\[r_{ph,m} = \text{constant} \]

\[r_{ph,heat} \]
PE in SLP panel photobioreactors?

Short light-path

Turbulence

<table>
<thead>
<tr>
<th>Species</th>
<th>I (μmol m$^{-2}$s$^{-1}$)</th>
<th>Light path (cm)</th>
<th>$Y_{x,E}$ (g mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical maximum ⇒</td>
<td></td>
<td></td>
<td>1.50</td>
</tr>
<tr>
<td>Spirulina</td>
<td>1800</td>
<td>2.6</td>
<td>1.42</td>
</tr>
<tr>
<td>Spirulina</td>
<td>2x1050</td>
<td>1.4</td>
<td>1.62</td>
</tr>
<tr>
<td>Chlorococcum</td>
<td>2x1000</td>
<td>1.0</td>
<td>0.53</td>
</tr>
<tr>
<td>Nannochloropsis</td>
<td>2000</td>
<td>1.0</td>
<td>0.37</td>
</tr>
</tbody>
</table>
WUR-BPE research focused on...

- High PE at high light intensity PFD by:
 - Short light path
 - Turbulent mixing
 - High biomass density
Panel reactors and saturating light, 950 \(\mu \text{mol m}^{-2} \text{ s}^{-1} \)

\[Y_{x,E} = 0.7 \text{ g mol}^{-1} \]

\[\text{PE} = 4 \% \]

\(\text{Dunaliella tertiolecta} \)

1, 2 and 3 cm Light path
Panel reactors and saturating light, 950 μmol m$^{-2}$ s$^{-1}$

1, 2 and 3 cm Light path

$Y_{X,E} = 0.7$ g mol$^{-1}$

PE = 4 %

Chlorella sorokiniana
Spinning Tube-in-Tube photobioreactor

- *Chlorella sorokiniana*
- 1 cm light path, variable mixing
- 1500 micromoles m\(^{-2}\) s\(^{-1}\)
Over-saturating light, 1500 μmol m$^{-2}$ s$^{-1}$

$Y_{x,E} = 0.7$ g mol$^{-1}$

PE = 4 %
Over-over saturating light

- *Chlorella sorokiniana*
- 1.4 cm panel reactor
- Variable dilution rate
- 2100 μmol m$^{-2}$ s$^{-1}$
Over-saturating light, 2100 μmol m⁻² s⁻¹

Yₓ,E = 1.0 g mol⁻¹

PE = 5 %
Conclusions photosynthetic efficiency

- PE of 4% possible under high PFD
- Biomass concentration 1 - 10 g L\(^{-1}\)
- High mixing does not help much…?
- …and takes too much energy!
High PE?... Light dilution!

- Go vertical and reduce light
- Combine with short light path systems
 - High biomass density

\[I_r = I_\perp \cdot \cos \beta \]
PE at moderate light intensity

\[Y_{x,E} = 1.1 \text{ g mol}^{-1} \]

570 micromoles m\(^{-2}\) s\(^{-1}\)

PE = 6 %
Outlook

- A Photosynthetic efficiency of 7% seems to be within reach for closed photobioreactors…
 - When corrected for night biomass loss 6% is a reasonable target for real life

- What will it cost…?
 Materials / construction
Mixing/gassing for CO₂ and O₂ transfer

- Gassing needs to be minimized, but:
 - CO₂ and O₂ transfer capacity must meet demands
 - Sedimentation must be prevented

- Important for any system, closed PBRs and open ponds!

- What is the energy requirement?
Gas transfer: a calculation example

Width 0.01 m

5 rows / m

0.5 m
Flue gas 10% v/v CO₂

Exhaust 1% v/v CO₂

Recirculation 1% ≈ v/v CO₂

3414 m³ h⁻¹ ha⁻¹

11.6 kW ha⁻¹

PFD_{surface} = 400 \mu mol m⁻² s⁻¹

QR = 18.7 hν / CO₂

PE = 6 %

Biomass production: 771 mol BioC h⁻¹ ha⁻¹

≈ 18.5 kg h⁻¹ ha⁻¹

125 kW ha⁻¹

Creation of transfer area!

186 m³ h⁻¹ ha⁻¹

Flue gas 10% v/v CO₂
CO$_2$ transfer rate (CTR) and gas flow rate

\[
CTR = k_{l,CO2} \cdot a \cdot (C_{CO2,interface} - C_{CO2,bulk}) \quad [\text{mol CO}_2 \text{ m}^{-3} \text{ s}^{-1}]
\]

\[
k_{l,CO2} \cdot a = 0.96 \cdot k_{l,O2} \cdot a = 0.96 \cdot 0.32 \cdot v_{gs}^{0.7}
\]

- PFD
- QR_{CO2}
- V_r
- A_r

25 °C, pure water, pH 7

0.35 mM CO$_2$ \cong 1% v/v CO$_2$
0.1 mM CO$_2$

Bubble column
Coalescing, non-viscous
bubble diameter \approx 6 mm

Superficial gas velocity
Conclusions gas transfer

- Liquid mixing and CO$_2$ supply can be combined
- O$_2$ can be removed too
 - O$_2$ will accumulate to \approx 2 times air saturation
- Amount of energy is needed equivalent to 10% of sunlight energy fixed inside the biomass
 - independent of photosynthetic efficiency or light input
 - Also algal ponds need to be gassed
Acknowledgments

- Jan-Willem Zijffers
- Annette Kliphuis
- Maria Cuaresma
Thank you for your attention

www.bpe.wur.nl
www.wetsus.nl

© Wageningen UR
Biomass growth versus lipid accumulation

\[
\text{CO}_2 + 0.71 \text{H}_2\text{O} + 0.12 \text{NH}_4^+ \rightarrow \text{CH}_{1.78}\text{O}_{0.36}\text{N}_{0.12} + 1.18 \text{O}_2 + 0.12 \text{H}^+
\]

11.8 h

50% w/w fatty acid (C\text{16}) accumulation/excretion:
\[
\text{CO}_2 + 0.88 \text{H}_2\text{O} + 0.05 \text{NH}_4^+ \rightarrow \text{CH}_{1.91}\text{O}_{0.23}\text{N}_{0.05} + 1.32 \text{O}_2 + 0.05 \text{H}^+
\]

13.2 h

\[
\text{CO}_2 + 0.95 \text{H}_2\text{O} + 0.12 \text{NO}_3^- \rightarrow \text{CH}_{1.78}\text{O}_{0.36}\text{N}_{0.12} + 1.42 \text{O}_2 + 0.12 \text{OH}^-
\]

14.2 h

50% w/w fatty acid (C\text{16}) accumulation/excretion:
\[
\text{CO}_2 + 0.98 \text{H}_2\text{O} + 0.05 \text{NO}_3^- \rightarrow \text{CH}_{1.91}\text{O}_{0.23}\text{N}_{0.05} + 1.43 \text{O}_2 + 0.05 \text{OH}^-
\]

14.3 h