Advanced CO$_2$ Separation Using Molecular Gates

Shingo Kazama
Research Institute of Innovative Technology for the Earth (RITE)
Outline

1. CO₂ Separation Membrane for IGCC
2. CO₂ Molecular Gate Function for CO₂/H₂ separation
3. Dendrimer for Possible Molecular Gate
4. Dendrimer Hybrid Membrane
5. Next Generation of CO₂ Molecular Gate in GCEP research
6. Concluding Remarks
CO₂ Capture Methods for CCS

1. CO₂ Sources
- **Fossil Fuel**
- **Bio-Mass**

2. CO₂ Capture (Chemical Research Group in RITE)

<table>
<thead>
<tr>
<th>Method</th>
<th>CO₂ Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption</td>
<td>CO₂ < 2%</td>
</tr>
<tr>
<td></td>
<td>CO₂ > 99%</td>
</tr>
<tr>
<td>Membrane</td>
<td>CO₂ > 95%</td>
</tr>
<tr>
<td>Adsorption</td>
<td>CO₂ < 2%</td>
</tr>
</tbody>
</table>

- **Absorber**
 - Absorbent
 - Novel process
 - Waste heat utilization
- **Regenerator**
- **Polymer**
- **Zeolite**
- **Carbon**
- **Nanocomposite material**

Zeolite, Mesoporous silica

Plant analysis for the decreasing energy and cost

3. Storage (CO₂ Storage Group in RITE)
- **Geological**
- **Utilization**
- **Ocean**
Driving Force in PCPP and IGCC

<table>
<thead>
<tr>
<th>Gas source</th>
<th>Pulverized Coal Power Plant</th>
<th>IGCC with WGS reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total press. in Feed</td>
<td>101 kPa</td>
<td>4000 kPa</td>
</tr>
<tr>
<td>CO₂ Conc./ %</td>
<td>14 %</td>
<td>40 %</td>
</tr>
<tr>
<td>Total press. in Permeate</td>
<td>10 kPa Vacuum</td>
<td>101 kPa</td>
</tr>
<tr>
<td>Difference of CO₂ partial press. (initial)</td>
<td>8.9 kPa</td>
<td>1,470 kPa</td>
</tr>
</tbody>
</table>

Driving force of CO₂ permeation more than 150 times
Cost Estimation of CO₂ Membrane Separation from IGCC

<table>
<thead>
<tr>
<th>CO₂ Source</th>
<th>Gas Pres.</th>
<th>CO₂ Comp.</th>
<th>Membrane Performance (Target in RITE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGCC w/ WGS</td>
<td>4 MPa</td>
<td>CO₂:40% H₂, H₂O</td>
<td>αCO₂/H₂: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CO₂ Permeance: 1x10⁻⁹ (m³ m⁻² s⁻¹ Pa⁻¹)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 Stages</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ref. Absorption</th>
<th>Gas Pres.</th>
<th>Gas Comp.</th>
<th>Membrane Separation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amine solution (MDEA-Flash)</td>
<td>4 MPa</td>
<td>Amine solution (MDEA-Flash)</td>
<td></td>
</tr>
<tr>
<td>Phys Absorption</td>
<td>4 MPa</td>
<td>Phys Absorption</td>
<td></td>
</tr>
<tr>
<td>Amine solution (KS solution)</td>
<td>0.1 MPa</td>
<td>Amine solution (KS solution)</td>
<td></td>
</tr>
</tbody>
</table>

* Duration period: Facility: 15 years, Membrane: 5 years
 Membrane Skid Cost: 50,000 JPY/m²
What is an ideal membrane for CO$_2$/H$_2$ separation?

A hint may exist in a towel balloon.

Dry Towel

Wet Towel
Concept of CO$_2$ Molecular Gate for CO$_2$/H$_2$ Separation

Excellent CO$_2$ selectivity
Dendrimer Membrane:
A CO$_2$ Selective Molecular Gate

Polyamidoamine (PAMAM) dendrimer

CO$_2$/N$_2$ separation:
J. Am. Chem. Soc. 2000, 122, 7594-7595
Design of Dendrimer's Chemical Structure for better CO$_2$/H$_2$ separation

Original Polyamidoamine (PAMAM) dendrimer

Newly Synthesized

Hydroxyl Polyamidoamine (PAMAM) dendrimer
CO$_2$/H$_2$ Permeability & Selectivity of Dendrimers

3OH-PAMAM dendrimer

$P_{CO_2} = 7.8 \times 10^{-12}$ [m3(STP) m$^{-2}$ s$^{-1}$ kPa$^{-1}$], $\alpha_{CO_2/H_2} = 1,000$ (at 80RH%)

- Feed: (CO$_2$/H$_2$=5/95) at 25 °C, Dendrimer was supported in porous substrate
- Isobaric test condition
H₂ Blockage by CO₂ in Dendrimer

H₂ Permeability
Pure gas > Mixed-gas
(CO₂: 5 %)

CO₂ blocks H₂ permeation

Mixed-gas	5%CO₂	Pure gas
4OH | ▲ | ■
Possible Model of \(H_2\) Perm. Blockage

- Carbamate Formation
- Pseudo-cross-linkage
- \(H_2\) permeation blockage
Dendrimer Hybrid Membrane for CO₂ Capture from Pressurized Gas Stream

O-OH-PAMAM dendrimer

UV Curing

PEGDMA

TMPTMA
CO₂/H₂ Separation Properties of Dendrimer Hybrid Membrane at Elevated Pres.

PAMAM/PEGDMA/TMPTMA, Feed : 100 mL/min, Sweep: 20 ml/min, T = 313 K, R.H. = 80%
CO₂/H₂ Separation Properties of Various Dendrimer Hybrid Membranes

Film Thickness: 500 μm
CO₂ partial press.: 6 bar at 313 K

Temperature Dependence of Membrane Performance

[Graph showing temperature dependence of membrane performance with CO$_2$/H$_2$ selectivity and CO$_2$ permeance plotted against temperature.]

CO$_2$/H$_2$ Selectivity

CO$_2$ Permeance / m3(STP)/(m2 s Pa)

- 25 ºC
- 40 ºC
- 55 ºC

Thickness: 500 µm

PAMAM/ PEGDMA/ TMPTMA
Development of Membrane Module

Now fabricating dendrimer membrane modules with membrane module makers

Dendrimer/Polymeric matrix: Dendrimer Hybrid
Current Generation:
High CO$_2$/H$_2$ selectivity
at various CO$_2$ partial pressure
from atmospheric to elevated pressure
at high relative humidity such as 80 %RH or more
→ Required no dehumidifying process

Next Generation:
Should be adapted over a wide range of relative humidity
GCEP’s Challenge
CO₂ permeation Model of Current Dendrimer Hybrid Membrane

[Diagram showing the process of CO₂ permeation through a hybrid membrane with steps labeled as Gas Feed, Sorption, Diffusion, and Desorption.]
Sc-CO$_2$ Structure Directing Method for Next Generation Membrane

Inject Sc-CO$_2$

Remove Sc-CO$_2$

Pre-formed Solid Membrane

Amino moiety

CO$_2$

carbamate formation

Ion Hopping Channel
Set-up for Sc-CO$_2$ Structure Directing Method

Membrane under Sc-CO$_2$

Pressure: 10 MPa
Temperature: 20-60°C
Membrane application for CO\textsubscript{2} capture from a pressurized gas stream is promising way of reducing CO\textsubscript{2} capture cost and energy.

- Molecular gate membrane (MGM) is proposed for high CO\textsubscript{2} selectivity over H\textsubscript{2}.
- Dendrimer membrane has good CO\textsubscript{2} separation performance over a wide range of CO\textsubscript{2} partial pressure and highly humidified feed gas.
- Next generation MGMs that work well in a wide range of humidity in a feed gas and have higher selectivity are now under development in GCEP project.
Acknowledgements

Researchers:
Dr. Yuichi Fujioka, Dr. Katsunori Yogo
Dr. Shuhong Duan, Dr. Teruhiko Kai, Dr. Kazuya Goto,
Dr. Ryo Nagumo, Dr. Ryosuke Shimizu, Dr. Hiroshi Machida
Dr. Ikuo Taniguchi, Dr. Kouta Yamazaki

Student of NAIST *(Nara Institute of Science and Technology)* :
Mr. Tomoyuki Kato

This study is supported by
-GCEP, Stanford University
-Ministry of Economy, Trade and Industry (METI), Japan.
-Nippon Steel Engineering Co., Ltd.
GHGT-11

- 11th International Conference on Greenhouse Gas Control Technologies -

November 2012 - Kyoto will welcome experts in greenhouse gas control technologies from across the world!

2. Venue : Kyoto International Conference Center, Japan

3. Organizers : RITE & IEAGHG

4. Estimated Number of Attendees: 1,600

5. Themes of Technical Sessions
 (at GHGT-10, Sep. 2010, Amsterdam, the Netherlands)
 - Capture, Utilisation, Storage,
 - Integrated, Demonstrations,
 - Policy, Negative Emissions, Legal,
 - Public Perception
Thank you for your attention!

Research Institute of Innovative Technology for the Earth

Contact: kazama@rite.or.jp