ABSTRACT

Computational Method
- A Lagrangian approach to solve phase transport in porous media
- A particle represents a phase (physical particles)
- Particles can carry various properties such as composition
- It is different from deterministic particle methods such as SPH
- Saturation is a local statistical property
- Physical particle evolution is approximated by a stochastic process
- Motivation: natural modeling framework for complex processes

Applications
- Numerical simulation framework for CO₂ sequestration in subsurface formations. The problem involves complex non-equilibrium processes:
 - Dissolution of CO₂ in brine
 - Chemical reactions
 - Trapping of CO₂
- SPM is a rigorous framework that can deal with non-equilibrium phenomena based on:
 - Statistical information from pore scale physics
 - Joint PDFs, correlation time and length scales

MATHEMATICAL MODEL AND SOLUTION ALGORITHM

Validation for 2-Phase Darcy Flow: An Example of a Stochastic Model

Algorithm
- **Flow Solver-FVM**
- **Stochastic rule for Particle Velocity**
- **Particle Movement**
- **Saturation Estimation**

1D Test Case: Buckley-Leverett Problem
- Saturation of injected phase after t=0.25s for two grid spacings Vₘᵣ,=1m/s, C₀=0.

1D Test Case: Buckley-Leverett Problem with Capillary Pressure
- **Constant C**
- Saturation of injected phase after t=0.25s. Dₓ=0.001. dₓ=0.01.

Non-constant C
- C(S) = \(\frac{C(1-S)^2}{3(1-S)^2} \)
- Saturation of injected phase after t=0.25s. Dₓ=0.001. dₓ=0.01.

2D Test Case: Quarter-Five Spot Configuration

Homogeneous Permeability Field
- Simulation results after 0.25 PVI
- Grid =100*100
- In the scatter plot, blue particles are injected in the domain initially filled with red particles.
- Dₓ=0.01 Vₘᵣ, C₀=0

Heterogeneous Permeability Field
- Simulation results after 0.25 PVI
- Grid =100*100
- In the scatter plot, blue particles are injected in the domain initially filled with red particles.
- Dₓ=0.01 Vₘᵣ, C₀=0

OUTLOOK
- Transporting particles with more complex rules that are consistent with the pore scale dynamics. The rules for particle movement can be provided by pore network simulations
- Using SPM for the problem of CO₂ sequestration in subsurface formations: A numerical tool to study complex processes; dissolution of CO₂ in brine, reaction, trapping etc.
- Extract effective models for finite volume simulator