Hydrogen storage in carbon nanotubes through the formation of C-H bonds

A. Nikitin1), Z. Zhang2), H. Ogawara1), D. Mann3), X. Liu3), H. Dai3), KJ Cho2), A. Nilsson1,4)

1) Stanford Synchrotron Radiation Laboratory, 2) Department of Mechanical Engineering, Stanford University, 3) Department of Chemistry, Stanford University, 4) FISIKUM, Stockholm University, Sweden

\textbf{Idea:} storing hydrogen in the chemisorbed form on the surface of the carbon nanotubes

\textbf{Probing tools:} X-ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Spectroscopy (XAS)

\textbf{Hydrogenation:} \textit{in situ} atomic hydrogen treatment

\textbf{Samples:} ultra clean "as grown" SWCN films

\textbf{Growth conditions} SEM pictures Raman spectra

Type 1 C siti:CuaOCu, Gas 500 sccm of He, 100 sccm of H2, Temperature 850°C

Type 2 C siti:CuaOCu, Gas 300 sccm of He, 100 sccm of H2, Temperature 850°C

XPS and XAS spectra of the clean and hydrogenated SWCN

XPS spectra measured for the hydrogenated SWCN, type 1 without intercalated K (on the left) and with intercalated K (on the right). Peak 1 corresponds to the signal from the carbon atoms unaffected by the hydrogenation; whereas peak 2 is due to the hydrogenation degree.

3. The hydrogenated SWNT are stable from ambient temperature to 300°C. It should be pointed out that in the case of intercalated K the C1s shift has different nature — electrons donated by K atoms can move really easy to the excited C atom during photoionization process causing the change of the final state in the photoionization process.

4. Hydrogenation/dehydrogenation process can be cycled.

This work was funded by the Global Climate Energy Project and carried out at the Stanford Synchrotron Radiation Laboratory, national user facility supported by the U.S. Department of Energy, Office of Basic Energy Sciences.

Conclusions

1. SWCN with different diameters can reach different hydrogenation degree before "unzipping" and etching.

2. For specific SWCN it is possible to hydrogenate almost 100 at % of the carbon atoms in the walls to form C-H bonds which corresponds to >7 wt % of SWCN hydrogen capacity.

3. The hydrogenated SWNT are stable from ambient temperature to 300°C.

4. Hydrogenation/dehydrogenation process can be cycled.