Advanced Modeling of Diesel Engines

Development of a Computational Tool for Simulation of Internal Combustion Engines

Shashank and Heinz Pitsch

Motivation

- Diesel engines
 - Higher fuel efficiency than gasoline engines
 - Lower pollutant emissions than gasoline engines
 - Oxygenated liquid fuels offer significant reduction in particulate emission
 - NOX emission from diesel engines

Objectives

- To systematically study the effectiveness of oxygenated fuels in actual Diesel engine
- To perform three-dimensional numerical simulations of flow and combustion in realistic Diesel engine configurations to study pollutant formation processes
- Development of a computational tool capable of modeling the flow and combustion in an internal combustion engine.

Capabilities of the Code

- Parametric study using an experimental set up is prohibitively expensive
- Large Eddy Simulation (LES) is an ideal tool for modeling the highly unsteady and non-homogenous flow in an internal combustion engine.
- To perform wide range of parameter study at a low computational cost, a structured code is being developed
- To accurately resolve complex moving geometries in a strutured code
 - Immersed Boundary technique
 - Moving mesh technique

Immersed Boundary Technique

- Algorithm implemented for proper representation of all geometrical complexities of an internal combustion engine
 - Immersed Boundary (IB) technique
 - The numerical algorithm for the mesh across irregular boundaries is modified to account for the body surface as a boundary condition
 - To be used to represent moving valve and piston bowl in a Diesel engine

Moving Mesh Algorithm

- Algorithm implemented to model the motion of the piston in an internal combustion engine
 - Arbitrary Lagrangian Eulerian (ALE) technique
 - The computational mesh could be either fixed (Eulerian) or moving with material (Lagrangian) or can be specified in an arbitrary manner for better resolution

Code Validation

LES of flow in simplified piston-cylinder assembly

- IMFT square piston test case
 - Square cylinder with flat head
 - Volumetric ratio of 4
 - Piston driven at 200 rpm
 - 4 stroke cycle

Future Direction

- Validate against the data on oxygenated fuels from Sandia Diesel combustion simulation vessel
- Performing simulations in realistic engine configurations to study the effectiveness of oxygenated fuels