Azide-Modified Graphitic Surfaces for Covalent Attachment of Molecular Species by ‘Click’ Chemistry

Anando Devadoss, Viktor Shkolnikov, Charles C. L. McCrory, Xavier Ottenwaelder, Vennesa O. Williams, and Christopher E. D. Chidsey

Molecular Species-Attached Graphitic Surfaces

Motivation
- Graphite as electrode material: inexpensive, stable to oxidation and hydrolysis, and electrically conductive
- Attaching molecular species (e.g., electrocatalysts) to graphite electrodes can find applications in:
 - fuel cells
 - electrochemical synthesis
 - sensors

Challenges
- The catalyst should be coupled to the substrate by a robust linker, that is oxidatively and hydrolytically stable
- The linker should provide adequate electrical coupling between the substrate surface and the molecular catalyst

Our Approach using ‘Click’ Chemistry
- Use azide-modified graphite surfaces as a platform to covalently couple ethynyl-terminated molecular catalysts by a 1,2,3-triazole linker formed via the Cu(I)-catalyzed 1,3-Huisgen cycloaddition, popularly known as a ‘click’ reaction

Advantages of using the Click Reaction
- High yield (almost 100% yield)
- Low quantity of reagents required (μM concentration sufficient)
- Fast reaction time (in minutes)
- Inertness to a range of reaction conditions (aqueous, non-aqueous, acidic, basic etc.) and allows a broader range of molecular catalysts be coupled to the surface
- The triazole is a robust aromatic linker, stable to hydrolysis and air oxidation

Preparation of Azide-Modified Graphitic Surfaces and Attaching Ethynylericocene to the Surfaces

A method to prepare azide-terminated graphite surfaces that can be used to couple ethynyl-terminated species to graphite surfaces has been developed by the Chidsey Group, Stanford University

IN$_3$ Reaction is Selective to Edge-Plane Graphite

Figure 2: Schematic diagram showing the preparation of azide-modified graphitic surface using iodine azide as the reagent and subsequent coupling of ethynylericocene via the ‘click’ reaction

Figure 3: XPS data showing the presence of azide on the graphite surface and formation of the triazole after the click reaction

IN$_3$ Reaction is Selective to Edge-Plane Graphite

Figure 4: XPS data showing the presence of Fe 2p peaks due to the ethynylericocene coupled to the surface

Figure 5: Voltammetric data showing the presence of redox peaks due to the ethynylericocene coupled to the surface

surface coverage of ethynylericocene obtained in pyrolyzed photoresists (graphitic substrate): 2.5 x 10$^{-11}$ molecules cm$^{-2}$

IN$_3$ Reaction is Selective to Edge-Plane Graphite

Figure 6: Cyclic voltammograms obtained at A) edge-plane graphite and B) basal-plane graphite surfaces after treating the surfaces with iodine azide and subsequently attaching ethynylericocene.

Hydrolytic Stability of the Triazole Linker

1-ethyl-4-(trifluoromethyl)benzene was attached to the azide-modified graphite surface by click chemistry. The surface was immersed in 1M HCl for 1 h at 55°C. The stability of the triazole linker was monitored following the F 1s spectra.

Figure 7: XPS data showing the stability of the triazole linker towards hydrolysis treatment. Top row: before hydrolysis treatment, bottom row: after hydrolysis treatment.

Cu(phen)/3-ethylphen-coupled Graphite Surfaces

Figure 8: Cyclic voltammograms obtained at a 3-ethylphen-coupled surface and a Cu(phen)(3-ethylphen)-coupled surface.

Future directions:
- Coupling coordination complexes with Pt, Ru, and Pd and exploring their electrocatalytic properties
- Extending the ‘click’ chemistry method to other substrates relevant to energy applications