Scalability and Implementation of CCS with Bio-Feedstocks

Sally Benson
Energy Resources Engineering
Stanford University
June 15, 2012

GLOBAL CHALLENGES – GLOBAL SOLUTIONS – GLOBAL OPPORTUNITIES
Comparative Evaluation of CCS with Biomass and Fossil Fuels

Fossil Fuels (inc. co-firing) Biomass Feedstocks

- Large central power generating stations or industry
 - 100 to 1000 MW
 - (1-10 MT CO$_2$/year)
- Efficient and reliable fuel delivery systems
- Consistent fuel source
- Year-round 24/7 operations
- Potentially smaller scale power generation
 - 50 MW (1/10 size of fossil plants)
 - < 1 MT CO$_2$/year
- Significant scale-up and logistical issues with biomass delivery/storage
- Variable fuel sources
- Potentially variable operations depending on biomass feedstock availability
Some Key Issues for Large Scale Deployment of BECCS

• Availability of sustainably and reliably produced biomass feedstocks for 30-50 years
• Flue gas composition and capture options
• Co-location of geological storage resources with demand for electricity/heat and biomass resources
• Ability to cost-effectively scale (up/down) each element in the BECCS technology chain
Carbon Dioxide Capture and Sequestration Involves 4 Steps

1. Capture
2. Compression
3. Pipeline Transport
4. Geological Sequestration
Post-Combustion Capture

Air
Fuel

Boiler

Steam

Turbine
Electricity

Carbon dioxide + Nitrogen + Water

Chemical wash

Compressed and dehydrated

Nitrogen + Water

Transport and storage

CO_2 is captured after fuel has been burned

Image after ZEP
Pre-Combustion Capture

CO₂ is captured before fuel is burned

Image after ZEP
Oxyfuel-Combustion Capture

Air separation unit

Nitrogen

Air

Oxygen

Fuel

Boiler

CO₂ is captured during combustion

Turbine

Steam

Electricity

Recirculate to control boiler temperature

Carbon dioxide + Water

Transport and storage

Image after ZEP
Capture: Key Questions

• Which biomass sources are most amenable to capture?
 – What would the properties of a purpose-designed biomass source for BECCS?

• Which capture technology scales most cost-effectively?

• Which capture technology can best manage variable biomass feedstocks?

• Which capture technique will operate most reliably in the regions where BECCS will be deployed?
Carbon Dioxide Capture and Sequestration Involves 4 Steps

Capture → Compression → Pipeline Transport → Geological Sequestration
U.S. Existing and Planned CO$_2$ Pipeline Network

Currently transporting about 50 MT/year
Cost of Building Pipelines

Transport Cost Per Tonne of CO_2

Transportation: Key Issues

• Costs are highly scale dependent
 – Large returns with scale

• Long distance CO\textsubscript{2} transport unlikely without development of a common CO\textsubscript{2} pipeline system
 – Would help to piggyback on infrastructure developed for CCS with fossil fuels
Carbon Dioxide Capture and Sequestration Involves 4 Steps
CO₂ Sequestration Options

- Deep geological formations
 - Oil and gas
 - Coal
 - Saline aquifers
 - Basalts
 - Deep ocean sediments
- Oceans
 - Direct injection
 - Calcium bicarbonate formation
- Solids
 - Minerals
 - Cement
 - Other
Potential sequestration sites are broadly distributed around the globe.
Options for Geological Storage

Overview of Geological Storage Options

1. Depleted oil and gas reservoirs
2. Use of CO₂ in enhanced oil and gas recovery
3. Deep saline formations - (a) offshore (b) onshore
4. Use of CO₂ in enhanced coal bed methane recovery
Global Sequestration Capacity Estimates

<table>
<thead>
<tr>
<th>Region</th>
<th>Depleted Oil and Gas Reservoirs</th>
<th>Saline Formations</th>
<th>Coal Seams</th>
<th>TOTAL</th>
<th>Source</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>143</td>
<td>1653-20,213</td>
<td>60-117</td>
<td>1856-20,473</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Latin America</td>
<td>89</td>
<td>30.3</td>
<td>2</td>
<td>NA</td>
<td>14</td>
<td>a</td>
</tr>
<tr>
<td>Brazil</td>
<td>NA</td>
<td>2000</td>
<td>0.2</td>
<td>2000.2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>19.6</td>
<td>28.1</td>
<td>11.3</td>
<td>59</td>
<td>3, 4</td>
<td>b</td>
</tr>
<tr>
<td>Japan</td>
<td>0</td>
<td>1.9-146</td>
<td>0.1</td>
<td>2-146.1</td>
<td>5, 6, 14</td>
<td></td>
</tr>
<tr>
<td>Centrally Planned Asia and China (CPA)</td>
<td>9.7-21</td>
<td>110-360</td>
<td>10</td>
<td>1445-3080</td>
<td>7, 8, 9,</td>
<td>c</td>
</tr>
<tr>
<td>Other Pacific Asia (PAS)</td>
<td>56-188</td>
<td>NA</td>
<td>NA</td>
<td>56-188</td>
<td>11, 12</td>
<td>d</td>
</tr>
<tr>
<td>South Asia (SAS)</td>
<td>6.5-7.4</td>
<td>NA</td>
<td>0.36-0.39</td>
<td>6.86-7.79</td>
<td>12</td>
<td>e</td>
</tr>
<tr>
<td>Former Soviet Union (FSU)</td>
<td>177</td>
<td>NA</td>
<td>NA</td>
<td>177</td>
<td>13</td>
<td>f</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>36.6</td>
<td>34.6</td>
<td>7.6</td>
<td>48.3</td>
<td>14</td>
<td>g</td>
</tr>
<tr>
<td>Middle East and North Africa</td>
<td>439.5</td>
<td>9.7</td>
<td>0</td>
<td>449.2</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>20.22-30</td>
<td>95.72-350</td>
<td>1.08-1.5</td>
<td>117-381</td>
<td>15, 16</td>
<td>h</td>
</tr>
<tr>
<td>World</td>
<td>996 - 1150</td>
<td>3963 - 23,171</td>
<td>93 – 150</td>
<td>449.2</td>
<td>i</td>
<td></td>
</tr>
</tbody>
</table>

From KM13 GEA, 2012.
Basic Concept of Geological Sequestration of CO₂

- Injected at depths of 1 km or deeper into rocks with tiny pore spaces
- Primary trapping
 - Beneath seals of low permeability rocks

Image courtesy of ISGS and MGSC

Courtesy of John Bradshaw
How Do You Get CO$_2$ into the Ground?

- **Drill Rig**
- **Injection Well**
- **Wellhead**
- **Casing**
Seismic Monitoring Data from Sleipner

Monitoring

- Geophones
- Active Source Thermal Sensors
- Pressure Transducer
- Injection
- Well
- Wellhead Pressure
- Annulus Pressure
- Casing Logs
- CO$_2$ Sensors
- Flux Accumulation Chamber
- Flux Tower
- Walk Away VSP
- Injection Rate

Injection Well
Monitoring Well
Pressure Transducer
Geophones
Active Source Thermal Sensors
Storage: Key Issues

• In principle, no technical limitations to small scale storage

• But, major cost drivers are likely to be scale dependent (e.g. cost per tonne CO$_2$ will be greater for smaller projects)
 – Site characterization
 – Injection wells
 – Monitoring

• Institutional regulatory capacity to ensure and enforce safe and environmentally sound storage operations
Summary: Scalability of CCS

• BECCS influenced by issues of scale and implementation strategy
 – Capture
 – Transport
 – Storage
• CCS strategies and technologies tailored to bio-energy are needed
 – What are the most important areas to focus on?
• BECCS would benefit by taking advantage of a CCS infrastructure built to manage fossil fuel and industrial emissions
• Technology needs highly dependent on buildup of BECCS
 – Global biomass supply chain with large scale deployment
 – Local to regional biomass supply chain with small scale deployment