Skip to Main Content GCEP Home Page
blank space
HOME | RESEARCH | OUTREACH | EVENTS | NEWS | TECHNICAL LIBRARY | ABOUT US
spacer
Site Search Stanford University blank space
blank space
blank space
Link to Technical Library Energy 101 Tutorials Publications Solar Biomass Energy Hydrogen Advanced Combustion CO2 Capture CO2 Storage Advanced Materials & Catalysts Advanced Coal Advanced Transportation Advanced Electric Grid Grid Storage Integrated Assessment Technology Assessment Exploratory Projects Presentations Patents Reports Related Links
Peer-Reviewed Publications printer friendly format
Advanced Transportation

A Quantum Leap Forward for Li-Ion Battery Cathodes
  • Larsson, P., Ahuja, R., Liivat, A. and J. O. Thomas. “Structural and electrochemical aspects of Mn substitution into Li2FeSiO4 from DFT calculations.” Computational Materials Science, 47 (3), 678-684, doi:10.1016/j.commatsci.2009.10.008 (2010).
  • Kam, K. C., Gustafsson, T. and J. O. Thomas. “Synthesis and electrochemical properties of nano-structured Li2FeSiO4/C cathode materials for Li-ion batteries.” Solid State Ionics, doi:10.1016/j.ssi.2010.03.030 (2010).
  • Liivat, A. and J. O. Thomas. “A DFT study of VO43- polyanion substitution into the Li-ion battery cathode material Li2FeSiO4.” Comp. Mater. Sci. (submitted, 2010).
  • Liivat, A. and J. O. Thomas. “Li-ion migration in LFS cathode materials: a DFT study.” Solid State Ionics, doi:10.1016/j.ssi.2009.12.009 (2009).
  • Lo, M. F. “Solvothermal, Microwave and Polyol Medium Synthesis of Li2FeSiO4.” EuroMaster Thesis (2009.)
  • Liivat, A. and J. O. Thomas. “DFT-assisted design of orthosilicate-based cathode materials for Li-ion batteries.” Electrochem. Commun. (Submitted, 2009).
  • Kam, K. C., D. Ensling, A. Liivat, L. Häggström, and J. O. Thomas. “Enhanced capacity in the non-stoichiometric lithium iron silicate cathode material, Li2-2xFe1+xSiO4.” Ms. (In preparation, 2009.
  • Kam, K.C., D. Ensling, L. Häggström, and J. O. Thomas. “Manganese substitution into the non stoichiometric lithium iron silicate cathode material, Li1.5Fe1.25-zMnzSiO4.” Ms. (In preparation, 2009).
  • Ensling, D., M. Stjerndahl, M., Nyten, A., Gustafsson, T. and J. O. Thomas. “A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI- and LiPF6-based electrolytes.” Journal of Materials Chemistry, Vol. 19, pp. 82-88, doi:10.1039/b813099j (2009).
  • Ensling, D., Y. Jiang, T. Gustafsson, M. Armand, and J. O. Thomas. “Electrolyte stability for stoichiometric Li2FeSiO4.” (In preparation, 2009).
  • Jiang, Y. “The Role of the Electrolyte in Surface-layer Formation Li2FeSiO4.” EuroMaster Thesis (2008).
  • Larsson, P., A. Rajeev, A. Liivat, and J. O. Thomas. “Structural and electrochemical aspects of Mn-substitution into Li2FeSiO4.” Chem. Mater. (Submitted, 2008).
  • Stjerndahl, M. “Stability Phenomena in Novel Electrode Materials for Lithium-ion Batteries.” PhD Thesis, ISBN 978-91-554-6969-6, urn:nbn:se:uu:diva-8214 (2007).
  • Zakrezewski, P. “The Relationship Between Synthesis Parameters, Crystal Structure and Perfomance Li2FeSiO.” Euromaster Thesis (2007).
High-Energy Organic Battery Electrodes
Nanowire Lithium-Ion Batteries as Electrochemical Energy Storage for Electric Vehicles
(Battery Electrodes with Nanowire Architectures)
 
HOME  |  RESEARCH  |  EVENTS  |  NEWS  |  TECHNICAL LIBRARY  |  ABOUT  |  TERMS OF USE  |  SITE MAP

© Copyright 2013-2015 Stanford University: Global Climate and Energy Project (GCEP)


Restricted Use of Materials from GCEP Site: User may download materials from GCEP site only for User's own personal, non-commercial use. User may not otherwise copy, reproduce, retransmit, distribute, publish, commercially exploit or otherwise transfer any material without obtaining prior GCEP or author approval.