Detailed Balance Analysis and Enhancement of Open Circuit Voltage in Nanophotonic Solar Cells

(Opt. Express, v21, 2013)
Sunil Sandhu, Zongfu Yu, Ken Wang and Shanhai Fan
Stanford University

Abstract
We present a detailed balance based approach for performing current density-voltage characteristic modeling of nanophotonic solar cells. This approach takes into account the intrinsic material non-idealities, and is useful for determining the theoretical limit of solar cell efficiency for a given structure. Our approach only requires the cells absorption spectra over all angles, which can be readily calculated using available simulation tools. Using this approach, we elucidate the physics of open-circuit voltage enhancement over bulk cells in nanoscale thin film and single wire structures, by showing that the enhancement is related to the absorption suppression in the immediate spectral region above the bandgap.

Understanding Nanophotonic Solar Cells
To completely understand the limiting performance of a nanophotonic solar cell, we need to characterize its:
- open circuit voltage (V_{sc}) behavior
- short circuit current (J_{sc}) behavior
- Most of the previous works on nanophotonic cells have focussed on J_{sc} enhancement.

A nanoscale thin film solar cell can achieve a V_{oc} that is significantly larger over that of a bulk cell.
A detailed balance analysis can help us understand the physics of this voltage enhancement.

Physics of Voltage Enhancement (Detailed Balance Analysis)
The V_{oc} is mainly dependent on two different photon absorption rates:
(a) the photon absorption rate ($N_{N_{eq}}$) when the cell is under direct sunlight
(b) the photon absorption rate ($N_{N_{eq}}$) when the cell is in thermal equilibrium with incoming blackbody radiation at all angles of incidence.

10μm thick* bulk with AR coating $V_{oc} = 1.15V$
44μm thick* thin film on perfect reflector $V_{oc} = 1.21V$
Bulk limit

The narrowband thermal equilibrium spectral photon flux density has a width of ∼Δf_{sc} near the bandgap ($E_g ≈ 870 μeV$).
We can enhance the cell's $N_{N_{eq}}/N_{N_{eq}}$ ratio and, thus, its V_{oc} by:
- suppressing absorption within this Δf_{sc} window i.e. $N_{N_{eq}}$
- maintaining a large absorption outside this Δf_{sc} window i.e. $N_{N_{eq}}$.

In addition, we find that the dips in the nanoscale's V_{oc} vs $Radius$ plot coincides with the cases where an absorption resonance is in the immediate vicinity of the material bandgap i.e. E_g.

Conclusion
- Nanoscale solar cells allow us to achieve higher V_{oc} than a bulk cell, while at the same time providing the flexibility to absorb a particular part of the solar spectrum by, for example, tuning the radius of a nanowire
- Such a capability for voltage engineering can open new avenues for achieving high efficiency nanoscale solar cells

Acknowledgement
This work is supported by the Global Climate and Energy Project (GCEP) of Stanford University, by the Department of Energy Bay Area Photovoltaics Consortium (BAPVC), and by the Department of Energy Grant No. DE-FG02ER46428.